Skip to content

Formatting

toolbox_pyspark.formatting 🔗

Summary

The formatting module provides functions for formatting and displaying.

format_numbers 🔗

format_numbers(dataframe: psDataFrame) -> psDataFrame

Summary

Format numbers in a Spark DataFrame.

Details

This function formats numbers in a Spark DataFrame. It formats integers to have no decimal places and floats to have two decimal places. The function is useful for displaying intermediary tables in a more readable format. It will replace all numeric columns to string.

Parameters:

Name Type Description Default
dataframe DataFrame

The Spark DataFrame to format.

required

Raises:

Type Description
TypeError

If any of the inputs parsed to the parameters of this function are not the correct type. Uses the @typeguard.typechecked decorator.

Returns:

Type Description
DataFrame

The formatted Spark DataFrame.

Examples

Set Up
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
>>> # Imports
>>> import pandas as pd
>>> from pyspark.sql import SparkSession
>>> from toolbox_pyspark.formatting import format_numbers
>>>
>>> # Instantiate Spark
>>> spark = SparkSession.builder.getOrCreate()
>>>
>>> # Create data
>>> df = spark.createDataFrame(
...     pd.DataFrame(
...         {
...             "a": [1, 2, 3, 4],
...             "b": ["a", "b", "c", "d"],
...             "c": [1.0, 2.0, 3.0, 4.0],
...             "d": [1.1, 2.2, 3.3, 4.4],
...             "e": [1000, 10000, 100000, 1000000],
...             "f": [1111.11, 22222.22, 333333.33, 4444444.44],
...         }
...     )
... )
>>>
>>> # Check
>>> df.show()
Terminal
+---+---+-----+-----+---------+------------+
| a | b |   c |   d |       e |          f |
+---+---+-----+-----+---------+------------+
| 1 | a | 1.0 | 1.1 |    1000 |    1111.11 |
| 2 | b | 2.0 | 2.2 |   10000 |   22222.22 |
| 3 | c | 3.0 | 3.3 |  100000 |  333333.33 |
| 4 | d | 4.0 | 4.4 | 1000000 | 4444444.44 |
+---+---+-----+-----+---------+------------+

Example 1: Format Numbers by function
1
>>> format_numbers(df).show()
Terminal
+---+---+-----+-----+-----------+--------------+
| a | b |   c |   d |         e |            f |
+---+---+-----+-----+-----------+--------------+
| 1 | a | 1.0 | 1.1 |     1,000 |     1,111.11 |
| 2 | b | 2.0 | 2.2 |    10,000 |    22,222.22 |
| 3 | c | 3.0 | 3.3 |   100,000 |   333,333.33 |
| 4 | d | 4.0 | 4.4 | 1,000,000 | 4,444,444.44 |
+---+---+-----+-----+-----------+--------------+

Conclusion: Successfully formatted dataframe.

Example 2: Format Numbers by method
1
>>> df.transform(format_numbers).show()
Terminal
+---+---+-----+-----+-----------+--------------+
| a | b |   c |   d |         e |            f |
+---+---+-----+-----+-----------+--------------+
| 1 | a | 1.0 | 1.1 |     1,000 |     1,111.11 |
| 2 | b | 2.0 | 2.2 |    10,000 |    22,222.22 |
| 3 | c | 3.0 | 3.3 |   100,000 |   333,333.33 |
| 4 | d | 4.0 | 4.4 | 1,000,000 | 4,444,444.44 |
+---+---+-----+-----+-----------+--------------+

Conclusion: Successfully formatted dataframe.

Source code in src/toolbox_pyspark/formatting.py
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
@typechecked
def format_numbers(dataframe: psDataFrame) -> psDataFrame:
    """
    !!! note "Summary"
        Format numbers in a Spark DataFrame.

    ??? abstract "Details"
        This function formats numbers in a Spark DataFrame. It formats integers to have no decimal places and floats to have two decimal places. The function is useful for displaying intermediary tables in a more readable format. It will replace all numeric columns to string.

    Params:
        dataframe (psDataFrame):
            The Spark DataFrame to format.

    Raises:
        TypeError:
            If any of the inputs parsed to the parameters of this function are not the correct type. Uses the [`@typeguard.typechecked`](https://typeguard.readthedocs.io/en/stable/api.html#typeguard.typechecked) decorator.

    Returns:
        (psDataFrame):
            The formatted Spark DataFrame.

    ???+ example "Examples"

        ```{.py .python linenums="1" title="Set Up"}
        >>> # Imports
        >>> import pandas as pd
        >>> from pyspark.sql import SparkSession
        >>> from toolbox_pyspark.formatting import format_numbers
        >>>
        >>> # Instantiate Spark
        >>> spark = SparkSession.builder.getOrCreate()
        >>>
        >>> # Create data
        >>> df = spark.createDataFrame(
        ...     pd.DataFrame(
        ...         {
        ...             "a": [1, 2, 3, 4],
        ...             "b": ["a", "b", "c", "d"],
        ...             "c": [1.0, 2.0, 3.0, 4.0],
        ...             "d": [1.1, 2.2, 3.3, 4.4],
        ...             "e": [1000, 10000, 100000, 1000000],
        ...             "f": [1111.11, 22222.22, 333333.33, 4444444.44],
        ...         }
        ...     )
        ... )
        >>>
        >>> # Check
        >>> df.show()
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        +---+---+-----+-----+---------+------------+
        | a | b |   c |   d |       e |          f |
        +---+---+-----+-----+---------+------------+
        | 1 | a | 1.0 | 1.1 |    1000 |    1111.11 |
        | 2 | b | 2.0 | 2.2 |   10000 |   22222.22 |
        | 3 | c | 3.0 | 3.3 |  100000 |  333333.33 |
        | 4 | d | 4.0 | 4.4 | 1000000 | 4444444.44 |
        +---+---+-----+-----+---------+------------+
        ```
        </div>

        ```{.py .python linenums="1" title="Example 1: Format Numbers by function"}
        >>> format_numbers(df).show()
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        +---+---+-----+-----+-----------+--------------+
        | a | b |   c |   d |         e |            f |
        +---+---+-----+-----+-----------+--------------+
        | 1 | a | 1.0 | 1.1 |     1,000 |     1,111.11 |
        | 2 | b | 2.0 | 2.2 |    10,000 |    22,222.22 |
        | 3 | c | 3.0 | 3.3 |   100,000 |   333,333.33 |
        | 4 | d | 4.0 | 4.4 | 1,000,000 | 4,444,444.44 |
        +---+---+-----+-----+-----------+--------------+
        ```
        !!! success "Conclusion: Successfully formatted dataframe."
        </div>

        ```{.py .python linenums="1" title="Example 2: Format Numbers by method"}
        >>> df.transform(format_numbers).show()
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        +---+---+-----+-----+-----------+--------------+
        | a | b |   c |   d |         e |            f |
        +---+---+-----+-----+-----------+--------------+
        | 1 | a | 1.0 | 1.1 |     1,000 |     1,111.11 |
        | 2 | b | 2.0 | 2.2 |    10,000 |    22,222.22 |
        | 3 | c | 3.0 | 3.3 |   100,000 |   333,333.33 |
        | 4 | d | 4.0 | 4.4 | 1,000,000 | 4,444,444.44 |
        +---+---+-----+-----+-----------+--------------+
        ```
        !!! success "Conclusion: Successfully formatted dataframe."
        </div>
    """
    for col, typ in dataframe.dtypes:
        if typ in ("int", "tinyint", "smallint", "bigint"):
            dataframe = dataframe.withColumn(col, F.format_number(col, 0))
        elif typ in ("float", "double"):
            dataframe = dataframe.withColumn(col, F.format_number(col, 2))
    return dataframe

display_intermediary_table 🔗

display_intermediary_table(
    dataframe: psDataFrame,
    reformat_numbers: bool = True,
    num_rows: int = 20,
) -> psDataFrame

Summary

Display an intermediary Spark DataFrame.

Details

This function displays an intermediary Spark DataFrame. The function is useful for displaying intermediary tables in a more readable format. Optionally, it can format numbers in the DataFrame to make it more readable.

Parameters:

Name Type Description Default
dataframe DataFrame

The Spark DataFrame to display.

required
reformat_numbers bool

Whether to format numbers in the DataFrame. Default is True.

True
num_rows int

The number of rows to display. Default is 20.

20

Raises:

Type Description
TypeError

If any of the inputs parsed to the parameters of this function are not the correct type. Uses the @typeguard.typechecked decorator.

Returns:

Type Description
DataFrame

The original Spark DataFrame.

Examples

Set Up
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
>>> # Imports
>>> import pandas as pd
>>> from pyspark.sql import SparkSession
>>> from toolbox_pyspark.formatting import display_intermediary_table
>>>
>>> # Instantiate Spark
>>> spark = SparkSession.builder.getOrCreate()
>>>
>>> # Create data
>>> df = spark.createDataFrame(
...     pd.DataFrame(
...         {
...             "a": [1, 2, 3, 4],
...             "b": ["a", "b", "c", "d"],
...             "c": [1.0, 2.0, 3.0, 4.0],
...             "d": [1.1, 2.2, 3.3, 4.4],
...         }
...     )
... )
>>>
>>> # Check
>>> df.show()
Terminal
+---+---+-----+-----+
| a | b |   c |   d |
+---+---+-----+-----+
| 1 | a | 1.0 | 1.1 |
| 2 | b | 2.0 | 2.2 |
| 3 | c | 3.0 | 3.3 |
| 4 | d | 4.0 | 4.4 |
+---+---+-----+-----+

Example 1: Display intermediary table with no subsequent formatting
1
2
3
4
5
>>> (
...     df
...     .transform(display_intermediary_table, reformat_numbers=False, num_rows=2)
...     .show()
... )
Terminal
+---+---+-----+-----+
| a | b |   c |   d |
+---+---+-----+-----+
| 1 | a | 1.0 | 1.1 |
| 2 | b | 2.0 | 2.2 |
+---+---+-----+-----+
Terminal
+---+---+-----+-----+
| a | b |   c |   d |
+---+---+-----+-----+
| 1 | a | 1.0 | 1.1 |
| 2 | b | 2.0 | 2.2 |
| 3 | c | 3.0 | 3.3 |
| 4 | d | 4.0 | 4.4 |
+---+---+-----+-----+

Conclusion: Successfully displayed intermediary table with no subsequent formatting.

Example 2: Display intermediary table with subsequent formatting
1
2
3
4
5
6
>>> (
...     df
...     .transform(display_intermediary_table, reformat_numbers=True)
...     .withColumn("c", F.expr("c * 2"))
...     .show()
... )
Terminal
+---+---+-----+-----+
| a | b |   c |   d |
+---+---+-----+-----+
| 1 | a | 1.0 | 1.1 |
| 2 | b | 2.0 | 2.2 |
| 3 | c | 3.0 | 3.3 |
| 4 | d | 4.0 | 4.4 |
+---+---+-----+-----+
Terminal
+---+---+-----+-----+
| a | b |   c |   d |
+---+---+-----+-----+
| 1 | a | 2.0 | 1.1 |
| 2 | b | 4.0 | 2.2 |
| 3 | c | 6.0 | 3.3 |
| 4 | d | 8.0 | 4.4 |
+---+---+-----+-----+

Conclusion: Successfully displayed intermediary table with subsequent formatting.

Source code in src/toolbox_pyspark/formatting.py
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
@typechecked
def display_intermediary_table(
    dataframe: psDataFrame, reformat_numbers: bool = True, num_rows: int = 20
) -> psDataFrame:
    """
    !!! note "Summary"
        Display an intermediary Spark DataFrame.

    ???+ abstract "Details"
        This function displays an intermediary Spark DataFrame. The function is useful for displaying intermediary tables in a more readable format. Optionally, it can format numbers in the DataFrame to make it more readable.

    Params:
        dataframe (psDataFrame):
            The Spark DataFrame to display.
        reformat_numbers (bool):
            Whether to format numbers in the DataFrame. Default is `True`.
        num_rows (int):
            The number of rows to display. Default is `20`.

    Raises:
        TypeError:
            If any of the inputs parsed to the parameters of this function are not the correct type. Uses the [`@typeguard.typechecked`](https://typeguard.readthedocs.io/en/stable/api.html#typeguard.typechecked) decorator.

    Returns:
        (psDataFrame):
            The original Spark DataFrame.

    ???+ example "Examples"

        ```{.py .python linenums="1" title="Set Up"}
        >>> # Imports
        >>> import pandas as pd
        >>> from pyspark.sql import SparkSession
        >>> from toolbox_pyspark.formatting import display_intermediary_table
        >>>
        >>> # Instantiate Spark
        >>> spark = SparkSession.builder.getOrCreate()
        >>>
        >>> # Create data
        >>> df = spark.createDataFrame(
        ...     pd.DataFrame(
        ...         {
        ...             "a": [1, 2, 3, 4],
        ...             "b": ["a", "b", "c", "d"],
        ...             "c": [1.0, 2.0, 3.0, 4.0],
        ...             "d": [1.1, 2.2, 3.3, 4.4],
        ...         }
        ...     )
        ... )
        >>>
        >>> # Check
        >>> df.show()
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        +---+---+-----+-----+
        | a | b |   c |   d |
        +---+---+-----+-----+
        | 1 | a | 1.0 | 1.1 |
        | 2 | b | 2.0 | 2.2 |
        | 3 | c | 3.0 | 3.3 |
        | 4 | d | 4.0 | 4.4 |
        +---+---+-----+-----+
        ```
        </div>

        ```{.py .python linenums="1" title="Example 1: Display intermediary table with no subsequent formatting"}
        >>> (
        ...     df
        ...     .transform(display_intermediary_table, reformat_numbers=False, num_rows=2)
        ...     .show()
        ... )
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        +---+---+-----+-----+
        | a | b |   c |   d |
        +---+---+-----+-----+
        | 1 | a | 1.0 | 1.1 |
        | 2 | b | 2.0 | 2.2 |
        +---+---+-----+-----+
        ```
        ```{.txt .text title="Terminal"}
        +---+---+-----+-----+
        | a | b |   c |   d |
        +---+---+-----+-----+
        | 1 | a | 1.0 | 1.1 |
        | 2 | b | 2.0 | 2.2 |
        | 3 | c | 3.0 | 3.3 |
        | 4 | d | 4.0 | 4.4 |
        +---+---+-----+-----+
        ```
        !!! success "Conclusion: Successfully displayed intermediary table with no subsequent formatting."
        </div>

        ```{.py .python linenums="1" title="Example 2: Display intermediary table with subsequent formatting"}
        >>> (
        ...     df
        ...     .transform(display_intermediary_table, reformat_numbers=True)
        ...     .withColumn("c", F.expr("c * 2"))
        ...     .show()
        ... )
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        +---+---+-----+-----+
        | a | b |   c |   d |
        +---+---+-----+-----+
        | 1 | a | 1.0 | 1.1 |
        | 2 | b | 2.0 | 2.2 |
        | 3 | c | 3.0 | 3.3 |
        | 4 | d | 4.0 | 4.4 |
        +---+---+-----+-----+
        ```
        ```{.txt .text title="Terminal"}
        +---+---+-----+-----+
        | a | b |   c |   d |
        +---+---+-----+-----+
        | 1 | a | 2.0 | 1.1 |
        | 2 | b | 4.0 | 2.2 |
        | 3 | c | 6.0 | 3.3 |
        | 4 | d | 8.0 | 4.4 |
        +---+---+-----+-----+
        ```
        !!! success "Conclusion: Successfully displayed intermediary table with subsequent formatting."
        </div>
    """
    if reformat_numbers:
        dataframe.transform(format_numbers).show(n=num_rows, truncate=False)
    else:
        dataframe.show(n=num_rows, truncate=False)
    return dataframe

display_intermediary_schema 🔗

display_intermediary_schema(
    dataframe: psDataFrame,
) -> psDataFrame

Summary

Display the schema of an intermediary Spark DataFrame.

Details

This function displays the schema of an intermediary Spark DataFrame. The function is useful for displaying intermediary tables in a more readable format.

Parameters:

Name Type Description Default
dataframe DataFrame

The Spark DataFrame to display.

required

Returns:

Type Description
DataFrame

The original Spark DataFrame.

Examples

Set Up
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
>>> # Imports
>>> import pandas as pd
>>> from pyspark.sql import SparkSession
>>> from toolbox_pyspark.formatting import display_intermediary_schema
>>>
>>> # Instantiate Spark
>>> spark = SparkSession.builder.getOrCreate()
>>>
>>> # Create data
>>> df = spark.createDataFrame(
...     pd.DataFrame(
...         {
...             "a": [1, 2, 3, 4],
...             "b": ["a", "b", "c", "d"],
...             "c": [1.0, 2.0, 3.0, 4.0],
...             "d": [1.1, 2.2, 3.3, 4.4],
...         }
...     )
... )
>>>
>>> # Check
>>> df.show()
>>> df.printSchema()
Terminal
+---+---+-----+-----+
| a | b |   c |   d |
+---+---+-----+-----+
| 1 | a | 1.0 | 1.1 |
| 2 | b | 2.0 | 2.2 |
| 3 | c | 3.0 | 3.3 |
| 4 | d | 4.0 | 4.4 |
+---+---+-----+-----+
Terminal
root
|-- a: long (nullable = true)
|-- b: string (nullable = true)
|-- c: double (nullable = true)
|-- d: double (nullable = true)

Example 1: Display intermediary schema
1
>>> df.transform(display_intermediary_schema).show()
Terminal
root
|-- a: long (nullable = true)
|-- b: string (nullable = true)
|-- c: double (nullable = true)
|-- d: double (nullable = true)
Terminal
+---+---+-----+-----+
| a | b |   c |   d |
+---+---+-----+-----+
| 1 | a | 1.0 | 1.1 |
| 2 | b | 2.0 | 2.2 |
| 3 | c | 3.0 | 3.3 |
| 4 | d | 4.0 | 4.4 |
+---+---+-----+-----+

Conclusion: Successfully displayed intermediary schema.

Example 2: Display intermediary schema with subsequent formatting
1
>>> df.transform(display_intermediary_schema).withColumn("e", F.expr("c * 2")).show()
Terminal
root
|-- a: long (nullable = true)
|-- b: string (nullable = true)
|-- c: double (nullable = true)
|-- d: double (nullable = true)
Terminal
+---+---+-----+-----+---+
| a | b |   c |   d | e |
+---+---+-----+-----+---+
| 1 | a | 1.0 | 1.1 | 2 |
| 2 | b | 2.0 | 2.2 | 4 |
| 3 | c | 3.0 | 3.3 | 6 |
| 4 | d | 4.0 | 4.4 | 8 |
+---+---+-----+-----+---+

Conclusion: Successfully displayed intermediary schema.

Source code in src/toolbox_pyspark/formatting.py
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
def display_intermediary_schema(dataframe: psDataFrame) -> psDataFrame:
    """
    !!! note "Summary"
        Display the schema of an intermediary Spark DataFrame.

    ??? abstract "Details"
        This function displays the schema of an intermediary Spark DataFrame. The function is useful for displaying intermediary tables in a more readable format.

    Params:
        dataframe (psDataFrame):
            The Spark DataFrame to display.

    Returns:
        (psDataFrame):
            The original Spark DataFrame.

    ???+ example "Examples"

        ```{.py .python linenums="1" title="Set Up"}
        >>> # Imports
        >>> import pandas as pd
        >>> from pyspark.sql import SparkSession
        >>> from toolbox_pyspark.formatting import display_intermediary_schema
        >>>
        >>> # Instantiate Spark
        >>> spark = SparkSession.builder.getOrCreate()
        >>>
        >>> # Create data
        >>> df = spark.createDataFrame(
        ...     pd.DataFrame(
        ...         {
        ...             "a": [1, 2, 3, 4],
        ...             "b": ["a", "b", "c", "d"],
        ...             "c": [1.0, 2.0, 3.0, 4.0],
        ...             "d": [1.1, 2.2, 3.3, 4.4],
        ...         }
        ...     )
        ... )
        >>>
        >>> # Check
        >>> df.show()
        >>> df.printSchema()
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        +---+---+-----+-----+
        | a | b |   c |   d |
        +---+---+-----+-----+
        | 1 | a | 1.0 | 1.1 |
        | 2 | b | 2.0 | 2.2 |
        | 3 | c | 3.0 | 3.3 |
        | 4 | d | 4.0 | 4.4 |
        +---+---+-----+-----+
        ```
        ```{.txt .text title="Terminal"}
        root
        |-- a: long (nullable = true)
        |-- b: string (nullable = true)
        |-- c: double (nullable = true)
        |-- d: double (nullable = true)
        ```
        </div>

        ```{.py .python linenums="1" title="Example 1: Display intermediary schema"}
        >>> df.transform(display_intermediary_schema).show()
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        root
        |-- a: long (nullable = true)
        |-- b: string (nullable = true)
        |-- c: double (nullable = true)
        |-- d: double (nullable = true)
        ```
        ```{.txt .text title="Terminal"}
        +---+---+-----+-----+
        | a | b |   c |   d |
        +---+---+-----+-----+
        | 1 | a | 1.0 | 1.1 |
        | 2 | b | 2.0 | 2.2 |
        | 3 | c | 3.0 | 3.3 |
        | 4 | d | 4.0 | 4.4 |
        +---+---+-----+-----+
        ```
        !!! success "Conclusion: Successfully displayed intermediary schema."
        </div>

        ```{.py .python linenums="1" title="Example 2: Display intermediary schema with subsequent formatting"}
        >>> df.transform(display_intermediary_schema).withColumn("e", F.expr("c * 2")).show()
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        root
        |-- a: long (nullable = true)
        |-- b: string (nullable = true)
        |-- c: double (nullable = true)
        |-- d: double (nullable = true)
        ```
        ```{.txt .text title="Terminal"}
        +---+---+-----+-----+---+
        | a | b |   c |   d | e |
        +---+---+-----+-----+---+
        | 1 | a | 1.0 | 1.1 | 2 |
        | 2 | b | 2.0 | 2.2 | 4 |
        | 3 | c | 3.0 | 3.3 | 6 |
        | 4 | d | 4.0 | 4.4 | 8 |
        +---+---+-----+-----+---+
        ```
        !!! success "Conclusion: Successfully displayed intermediary schema."
        </div>
    """
    dataframe.printSchema()
    return dataframe

display_intermediary_columns 🔗

display_intermediary_columns(
    dataframe: psDataFrame,
) -> psDataFrame

Summary

Display the columns of an intermediary Spark DataFrame.

Details

This function displays the columns of an intermediary Spark DataFrame. The function is useful for displaying intermediary tables in a more readable format.

Parameters:

Name Type Description Default
dataframe DataFrame

The Spark DataFrame to display.

required

Returns:

Type Description
DataFrame

The original Spark DataFrame.

Examples

Set Up
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
>>> # Imports
>>> import pandas as pd
>>> from pyspark.sql import SparkSession
>>> from toolbox_pyspark.formatting import display_intermediary_columns
>>>
>>> # Instantiate Spark
>>> spark = SparkSession.builder.getOrCreate()
>>>
>>> # Create data
>>> df = spark.createDataFrame(
...     pd.DataFrame(
...         {
...             "a": [1, 2, 3, 4],
...             "b": ["a", "b", "c", "d"],
...             "c": [1.0, 2.0, 3.0, 4.0],
...             "d": [1.1, 2.2, 3.3, 4.4],
...         }
...     )
... )
>>>
>>> # Check
>>> df.show()
Terminal
+---+---+-----+-----+
| a | b |   c |   d |
+---+---+-----+-----+
| 1 | a | 1.0 | 1.1 |
| 2 | b | 2.0 | 2.2 |
| 3 | c | 3.0 | 3.3 |
| 4 | d | 4.0 | 4.4 |
+---+---+-----+-----+

Example 1: Display intermediary columns
1
>>> df.transform(display_intermediary_columns).show()
Terminal
['a', 'b', 'c', 'd']
Terminal
+---+---+-----+-----+
| a | b |   c |   d |
+---+---+-----+-----+
| 1 | a | 1.0 | 1.1 |
| 2 | b | 2.0 | 2.2 |
| 3 | c | 3.0 | 3.3 |
| 4 | d | 4.0 | 4.4 |
+---+---+-----+-----+
!!! success "Conclusion: Successfully displayed intermediary columns.

Example 2: Display intermediary columns with subsequent formatting
1
>>> df.transform(display_intermediary_columns).withColumn("e", F.expr("c * 2")).show()
Terminal
['a', 'b', 'c', 'd']
Terminal
+---+---+-----+-----+---+
| a | b |   c |   d | e |
+---+---+-----+-----+---+
| 1 | a | 1.0 | 1.1 | 2 |
| 2 | b | 2.0 | 2.2 | 4 |
| 3 | c | 3.0 | 3.3 | 6 |
| 4 | d | 4.0 | 4.4 | 8 |
+---+---+-----+-----+---+

Source code in src/toolbox_pyspark/formatting.py
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
def display_intermediary_columns(dataframe: psDataFrame) -> psDataFrame:
    """
    !!! note "Summary"
        Display the columns of an intermediary Spark DataFrame.

    ??? abstract "Details"
        This function displays the columns of an intermediary Spark DataFrame. The function is useful for displaying intermediary tables in a more readable format.

    Params:
        dataframe (psDataFrame):
            The Spark DataFrame to display.

    Returns:
        (psDataFrame):
            The original Spark DataFrame.

    ???+ example "Examples"

        ```{.py .python linenums="1" title="Set Up"}
        >>> # Imports
        >>> import pandas as pd
        >>> from pyspark.sql import SparkSession
        >>> from toolbox_pyspark.formatting import display_intermediary_columns
        >>>
        >>> # Instantiate Spark
        >>> spark = SparkSession.builder.getOrCreate()
        >>>
        >>> # Create data
        >>> df = spark.createDataFrame(
        ...     pd.DataFrame(
        ...         {
        ...             "a": [1, 2, 3, 4],
        ...             "b": ["a", "b", "c", "d"],
        ...             "c": [1.0, 2.0, 3.0, 4.0],
        ...             "d": [1.1, 2.2, 3.3, 4.4],
        ...         }
        ...     )
        ... )
        >>>
        >>> # Check
        >>> df.show()
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        +---+---+-----+-----+
        | a | b |   c |   d |
        +---+---+-----+-----+
        | 1 | a | 1.0 | 1.1 |
        | 2 | b | 2.0 | 2.2 |
        | 3 | c | 3.0 | 3.3 |
        | 4 | d | 4.0 | 4.4 |
        +---+---+-----+-----+
        ```
        </div>

        ```{.py .python linenums="1" title="Example 1: Display intermediary columns"}
        >>> df.transform(display_intermediary_columns).show()
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        ['a', 'b', 'c', 'd']
        ```
        ```{.txt .text title="Terminal"}
        +---+---+-----+-----+
        | a | b |   c |   d |
        +---+---+-----+-----+
        | 1 | a | 1.0 | 1.1 |
        | 2 | b | 2.0 | 2.2 |
        | 3 | c | 3.0 | 3.3 |
        | 4 | d | 4.0 | 4.4 |
        +---+---+-----+-----+
        ```
        !!! success "Conclusion: Successfully displayed intermediary columns.
        </div>

        ```{.py .python linenums="1" title="Example 2: Display intermediary columns with subsequent formatting"}
        >>> df.transform(display_intermediary_columns).withColumn("e", F.expr("c * 2")).show()
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        ['a', 'b', 'c', 'd']
        ```
        ```{.txt .text title="Terminal"}
        +---+---+-----+-----+---+
        | a | b |   c |   d | e |
        +---+---+-----+-----+---+
        | 1 | a | 1.0 | 1.1 | 2 |
        | 2 | b | 2.0 | 2.2 | 4 |
        | 3 | c | 3.0 | 3.3 | 6 |
        | 4 | d | 4.0 | 4.4 | 8 |
        +---+---+-----+-----+---+
        ```
    """
    print(dataframe.columns)
    return dataframe