Skip to content

IO

toolbox_pyspark.io πŸ”—

Summary

The io module is used for reading and writing tables to/from directories.

SPARK_FORMATS module-attribute πŸ”—

SPARK_FORMATS = Literal[
    "parquet",
    "orc",
    "json",
    "csv",
    "text",
    "avro",
    "jdbc",
    "oracle",
    "mysql",
    "postgresql",
    "mssql",
    "db2",
    "delta",
    "xml",
    "excel",
    "hive",
    "mongodb",
    "cassandra",
    "elasticsearch",
]

The valid formats that can be used to read/write data in Spark.

PySpark's built-in data source formats:

  • parquet
  • orc
  • json
  • csv
  • text
  • avro

Database formats (with proper JDBC drivers):

  • jdbc
  • oracle
  • mysql
  • postgresql
  • mssql
  • db2

Other formats with additional dependencies:

  • delta (requires: io.delta:delta-core dependency and delata-spark package)
  • xml (requires: com.databricks:spark-xml dependency and spark-xml package)
  • excel (requires: com.crealytics:spark-excel dependency and spark-excel package)
  • hive (requires: Hive support)
  • mongodb (requires: org.mongodb.spark:mongo-spark-connector dependency and mongo-spark-connector package)
  • cassandra (requires: com.datastax.spark:spark-cassandra-connector dependency and spark-cassandra-connector package)
  • elasticsearch (requires: org.elasticsearch:elasticsearch-hadoop dependency and elasticsearch-hadoop package)

VALID_SPARK_FORMATS module-attribute πŸ”—

VALID_SPARK_FORMATS: str_tuple = get_args(SPARK_FORMATS)

The valid formats that can be used to read/write data in Spark.

PySpark's built-in data source formats:

  • parquet
  • orc
  • json
  • csv
  • text
  • avro

Database formats (with proper JDBC drivers):

  • jdbc
  • oracle
  • mysql
  • postgresql
  • mssql
  • db2

Other formats with additional dependencies:

  • delta (requires: io.delta:delta-core dependency and delata-spark package)
  • xml (requires: com.databricks:spark-xml dependency and spark-xml package)
  • excel (requires: com.crealytics:spark-excel dependency and spark-excel package)
  • hive (requires: Hive support)
  • mongodb (requires: org.mongodb.spark:mongo-spark-connector dependency and mongo-spark-connector package)
  • cassandra (requires: com.datastax.spark:spark-cassandra-connector dependency and spark-cassandra-connector package)
  • elasticsearch (requires: org.elasticsearch:elasticsearch-hadoop dependency and elasticsearch-hadoop package)

WRITE_MODES module-attribute πŸ”—

WRITE_MODES = Literal[
    "append",
    "overwrite",
    "ignore",
    "error",
    "errorifexists",
]

The valid modes you can use for writing data frames:

  • append
  • overwrite
  • ignore
  • error
  • errorifexists

VALID_WRITE_MODES module-attribute πŸ”—

VALID_WRITE_MODES: str_tuple = get_args(WRITE_MODES)

The valid modes you can use for writing data frames:

  • append
  • overwrite
  • ignore
  • error
  • errorifexists

read_from_path πŸ”—

read_from_path(
    spark_session: SparkSession,
    name: str,
    path: str,
    data_format: Optional[SPARK_FORMATS] = "parquet",
    read_options: Optional[str_dict] = None,
) -> psDataFrame

Summary

Read an object from a given path in to memory as a pyspark dataframe.

Parameters:

Name Type Description Default
spark_session SparkSession

The Spark session to use for the reading.

required
name str

The name of the table to read in.

required
path str

The path from which it will be read.

required
data_format Optional[SPARK_FORMATS]

The format of the object at location path.
Defaults to "delta".

'parquet'
read_options Dict[str, str]

Any additional obtions to parse to the Spark reader.
Like, for example:

  • If the object is a CSV, you may want to define that it has a header row: {"header": "true"}.
  • If the object is a Delta table, you may want to query a specific version: {versionOf": "0"}.

For more info, check the pyspark docs: pyspark.sql.DataFrameReader.options.
Defaults to dict().

None

Raises:

Type Description
TypeError

If any of the inputs parsed to the parameters of this function are not the correct type. Uses the @typeguard.typechecked decorator.

Returns:

Type Description
DataFrame

The loaded dataframe.

Examples
Set up
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
>>> # Imports
>>> import pandas as pd
>>> from pyspark.sql import SparkSession
>>> from toolbox_pyspark.io import read_from_path
>>>
>>> # Instantiate Spark
>>> spark = SparkSession.builder.getOrCreate()
>>>
>>> # Create data
>>> df = pd.DataFrame(
...     {
...         "a": [1, 2, 3, 4],
...         "b": ["a", "b", "c", "d"],
...         "c": [1, 1, 1, 1],
...         "d": ["2", "2", "2", "2"],
...     }
... )
>>>
>>> # Write data
>>> df.to_csv("./test/table.csv")
>>> df.to_parquet("./test/table.parquet")

Check
1
2
>>> import os
>>> print(os.listdir("./test"))
Terminal
["table.csv", "table.parquet"]

Example 1: Read CSV
1
2
3
4
5
6
7
8
9
>>> df_csv = read_from_path(
...     name="table.csv",
...     path="./test",
...     spark_session=spark,
...     data_format="csv",
...     options={"header": "true"},
... )
>>>
>>> df_csv.show()
Terminal
+---+---+---+---+
| a | b | c | d |
+---+---+---+---+
| 1 | a | 1 | 2 |
| 2 | b | 1 | 2 |
| 3 | c | 1 | 2 |
| 4 | d | 1 | 2 |
+---+---+---+---+

Conclusion: Successfully read CSV.

Example 2: Read Parquet
1
2
3
4
5
6
7
8
>>> df_parquet = read_from_path(
...     name="table.parquet",
...     path="./test",
...     spark_session=spark,
...     data_format="parquet",
... )
>>>
>>> df_parquet.show()
Terminal
+---+---+---+---+
| a | b | c | d |
+---+---+---+---+
| 1 | a | 1 | 2 |
| 2 | b | 1 | 2 |
| 3 | c | 1 | 2 |
| 4 | d | 1 | 2 |
+---+---+---+---+

Conclusion: Successfully read Parquet.

Example 3: Invalid Path
1
2
3
4
5
6
7
>>> df_invalid_path = read_from_path(
...     name="invalid_table.csv",
...     path="./invalid_path",
...     spark_session=spark,
...     data_format="csv",
...     options={"header": "true"},
... )
Terminal
Py4JJavaError: An error occurred while calling o45.load.

Conclusion: Failed to read from invalid path.

Example 4: Invalid Format
1
2
3
4
5
6
7
>>> df_invalid_format = read_from_path(
...     name="table.csv",
...     path="./test",
...     spark_session=spark,
...     data_format="invalid_format",
...     options={"header": "true"},
... )
Terminal
Py4JJavaError: An error occurred while calling o45.load.

Conclusion: Failed to read due to invalid format.

See Also
Source code in src/toolbox_pyspark/io.py
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
@typechecked
def read_from_path(
    spark_session: SparkSession,
    name: str,
    path: str,
    data_format: Optional[SPARK_FORMATS] = "parquet",
    read_options: Optional[str_dict] = None,
) -> psDataFrame:
    """
    !!! note "Summary"
        Read an object from a given `path` in to memory as a `pyspark` dataframe.

    Params:
        spark_session (SparkSession):
            The Spark session to use for the reading.
        name (str):
            The name of the table to read in.
        path (str):
            The path from which it will be read.
        data_format (Optional[SPARK_FORMATS], optional):
            The format of the object at location `path`.<br>
            Defaults to `#!py "delta"`.
        read_options (Dict[str, str], optional):
            Any additional obtions to parse to the Spark reader.<br>
            Like, for example:<br>

            - If the object is a CSV, you may want to define that it has a header row: `#!py {"header": "true"}`.
            - If the object is a Delta table, you may want to query a specific version: `#!py {versionOf": "0"}`.

            For more info, check the `pyspark` docs: [`pyspark.sql.DataFrameReader.options`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameReader.options.html).<br>
            Defaults to `#!py dict()`.

    Raises:
        TypeError:
            If any of the inputs parsed to the parameters of this function are not the correct type. Uses the [`@typeguard.typechecked`](https://typeguard.readthedocs.io/en/stable/api.html#typeguard.typechecked) decorator.

    Returns:
        (psDataFrame):
            The loaded dataframe.

    ???+ example "Examples"

        ```{.py .python linenums="1" title="Set up"}
        >>> # Imports
        >>> import pandas as pd
        >>> from pyspark.sql import SparkSession
        >>> from toolbox_pyspark.io import read_from_path
        >>>
        >>> # Instantiate Spark
        >>> spark = SparkSession.builder.getOrCreate()
        >>>
        >>> # Create data
        >>> df = pd.DataFrame(
        ...     {
        ...         "a": [1, 2, 3, 4],
        ...         "b": ["a", "b", "c", "d"],
        ...         "c": [1, 1, 1, 1],
        ...         "d": ["2", "2", "2", "2"],
        ...     }
        ... )
        >>>
        >>> # Write data
        >>> df.to_csv("./test/table.csv")
        >>> df.to_parquet("./test/table.parquet")
        ```

        ```{.py .python linenums="1" title="Check"}
        >>> import os
        >>> print(os.listdir("./test"))
        ```
        <div class="result" markdown>
        ```{.sh .shell title="Terminal"}
        ["table.csv", "table.parquet"]
        ```
        </div>

        ```{.py .python linenums="1" title="Example 1: Read CSV"}
        >>> df_csv = read_from_path(
        ...     name="table.csv",
        ...     path="./test",
        ...     spark_session=spark,
        ...     data_format="csv",
        ...     options={"header": "true"},
        ... )
        >>>
        >>> df_csv.show()
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        +---+---+---+---+
        | a | b | c | d |
        +---+---+---+---+
        | 1 | a | 1 | 2 |
        | 2 | b | 1 | 2 |
        | 3 | c | 1 | 2 |
        | 4 | d | 1 | 2 |
        +---+---+---+---+
        ```
        !!! success "Conclusion: Successfully read CSV."
        </div>

        ```{.py .python linenums="1" title="Example 2: Read Parquet"}
        >>> df_parquet = read_from_path(
        ...     name="table.parquet",
        ...     path="./test",
        ...     spark_session=spark,
        ...     data_format="parquet",
        ... )
        >>>
        >>> df_parquet.show()
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        +---+---+---+---+
        | a | b | c | d |
        +---+---+---+---+
        | 1 | a | 1 | 2 |
        | 2 | b | 1 | 2 |
        | 3 | c | 1 | 2 |
        | 4 | d | 1 | 2 |
        +---+---+---+---+
        ```
        !!! success "Conclusion: Successfully read Parquet."
        </div>

        ```{.py .python linenums="1" title="Example 3: Invalid Path"}
        >>> df_invalid_path = read_from_path(
        ...     name="invalid_table.csv",
        ...     path="./invalid_path",
        ...     spark_session=spark,
        ...     data_format="csv",
        ...     options={"header": "true"},
        ... )
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        Py4JJavaError: An error occurred while calling o45.load.
        ```
        !!! failure "Conclusion: Failed to read from invalid path."
        </div>

        ```{.py .python linenums="1" title="Example 4: Invalid Format"}
        >>> df_invalid_format = read_from_path(
        ...     name="table.csv",
        ...     path="./test",
        ...     spark_session=spark,
        ...     data_format="invalid_format",
        ...     options={"header": "true"},
        ... )
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        Py4JJavaError: An error occurred while calling o45.load.
        ```
        !!! failure "Conclusion: Failed to read due to invalid format."
        </div>

    ??? tip "See Also"
        - [`load_from_path`][toolbox_pyspark.io.load_from_path]
        - [`read`][toolbox_pyspark.io.read]
        - [`load`][toolbox_pyspark.io.load]
    """

    # Set default options ----
    read_options: str_dict = read_options or dict()
    data_format: str = data_format or "parquet"
    load_path: str = f"{path}{'/' if not path.endswith('/') else ''}{name}"

    # Initialise reader (including data format) ----
    reader: DataFrameReader = spark_session.read.format(data_format)

    # Add options (if exists) ----
    if read_options:
        reader.options(**read_options)

    # Load DataFrame ----
    return reader.load(load_path)

write_to_path πŸ”—

write_to_path(
    data_frame: psDataFrame,
    name: str,
    path: str,
    data_format: Optional[SPARK_FORMATS] = "parquet",
    mode: Optional[WRITE_MODES] = None,
    write_options: Optional[str_dict] = None,
    partition_cols: Optional[str_collection] = None,
) -> None

Summary

For a given table, write it out to a specified path with name name and format format.

Parameters:

Name Type Description Default
data_frame DataFrame

The DataFrame to be written. Must be a valid pyspark DataFrame (pyspark.sql.DataFrame).

required
name str

The name of the table where it will be written.

required
path str

The path location for where to save the table.

required
data_format Optional[SPARK_FORMATS]

The format that the table will be written to.
Defaults to "delta".

'parquet'
mode Optional[WRITE_MODES]

The behaviour for when the data already exists.
For more info, check the pyspark docs: pyspark.sql.DataFrameWriter.mode.
Defaults to None.

None
write_options Dict[str, str]

Any additional settings to parse to the writer class.
Like, for example:

  • If you are writing to a Delta object, and wanted to overwrite the schema: {"overwriteSchema": "true"}.
  • If you"re writing to a CSV file, and wanted to specify the header row: {"header": "true"}.

For more info, check the pyspark docs: pyspark.sql.DataFrameWriter.options.
Defaults to dict().

None
partition_cols Optional[Union[str_collection, str]]

The column(s) that the table should partition by.
Defaults to None.

None

Raises:

Type Description
TypeError

If any of the inputs parsed to the parameters of this function are not the correct type. Uses the @typeguard.typechecked decorator.

Returns:

Type Description
type(None)

Nothing is returned.

Note

You know that this function is successful if the table exists at the specified location, and there are no errors thrown.

Examples
Set up
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
>>> # Imports
>>> import pandas as pd
>>> from pyspark.sql import SparkSession
>>> from toolbox_pyspark.io import write_to_path
>>> from toolbox_pyspark.checks import table_exists
>>>
>>> # Instantiate Spark
>>> spark = SparkSession.builder.getOrCreate()
>>>
>>> # Create data
>>> df = spark.createDataFrame(
...     pd.DataFrame(
...         {
...             "a": [1, 2, 3, 4],
...             "b": ["a", "b", "c", "d"],
...             "c": [1, 1, 1, 1],
...             "d": ["2", "2", "2", "2"],
...         }
...     )
... )

Check
1
>>> df.show()
Terminal
+---+---+---+---+
| a | b | c | d |
+---+---+---+---+
| 1 | a | 1 | 2 |
| 2 | b | 1 | 2 |
| 3 | c | 1 | 2 |
| 4 | d | 1 | 2 |
+---+---+---+---+

Example 1: Write to CSV
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
>>> write_to_path(
...     data_frame=df,
...     name="df.csv",
...     path="./test",
...     data_format="csv",
...     mode="overwrite",
...     options={"header": "true"},
... )
>>>
>>> table_exists(
...     name="df.csv",
...     path="./test",
...     data_format="csv",
...     spark_session=df.sparkSession,
... )
Terminal
True

Conclusion: Successfully written to CSV.

Example 2: Write to Parquet
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
>>> write_to_path(
...     data_frame=df,
...     name="df.parquet",
...     path="./test",
...     data_format="parquet",
...     mode="overwrite",
... )
>>>
>>> table_exists(
...     name="df.parquet",
...     path="./test",
...     data_format="parquet",
...     spark_session=df.sparkSession,
... )
Terminal
True

Conclusion: Successfully written to Parquet.

Example 3: Invalid Path
1
2
3
4
5
6
7
8
>>> write_to_path(
...     data_frame=df,
...     name="df.csv",
...     path="./invalid_path",
...     data_format="csv",
...     mode="overwrite",
...     options={"header": "true"},
... )
Terminal
Py4JJavaError: An error occurred while calling o45.save.

Conclusion: Failed to write to invalid path.

Example 4: Invalid Format
1
2
3
4
5
6
7
8
>>> write_to_path(
...     data_frame=df,
...     name="df.csv",
...     path="./test",
...     data_format="invalid_format",
...     mode="overwrite",
...     options={"header": "true"},
... )
Terminal
Py4JJavaError: An error occurred while calling o45.save.

Conclusion: Failed to write due to invalid format.

See Also
Source code in src/toolbox_pyspark/io.py
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
@typechecked
def write_to_path(
    data_frame: psDataFrame,
    name: str,
    path: str,
    data_format: Optional[SPARK_FORMATS] = "parquet",
    mode: Optional[WRITE_MODES] = None,
    write_options: Optional[str_dict] = None,
    partition_cols: Optional[str_collection] = None,
) -> None:
    """
    !!! note "Summary"
        For a given `table`, write it out to a specified `path` with name `name` and format `format`.

    Params:
        data_frame (psDataFrame):
            The DataFrame to be written. Must be a valid `pyspark` DataFrame ([`pyspark.sql.DataFrame`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrame.html)).
        name (str):
            The name of the table where it will be written.
        path (str):
            The path location for where to save the table.
        data_format (Optional[SPARK_FORMATS], optional):
            The format that the `table` will be written to.<br>
            Defaults to `#!py "delta"`.
        mode (Optional[WRITE_MODES], optional):
            The behaviour for when the data already exists.<br>
            For more info, check the `pyspark` docs: [`pyspark.sql.DataFrameWriter.mode`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameWriter.mode.html).<br>
            Defaults to `#!py None`.
        write_options (Dict[str, str], optional):
            Any additional settings to parse to the writer class.<br>
            Like, for example:

            - If you are writing to a Delta object, and wanted to overwrite the schema: `#!py {"overwriteSchema": "true"}`.
            - If you"re writing to a CSV file, and wanted to specify the header row: `#!py {"header": "true"}`.

            For more info, check the `pyspark` docs: [`pyspark.sql.DataFrameWriter.options`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameWriter.options.html).<br>
            Defaults to `#!py dict()`.
        partition_cols (Optional[Union[str_collection, str]], optional):
            The column(s) that the table should partition by.<br>
            Defaults to `#!py None`.

    Raises:
        TypeError:
            If any of the inputs parsed to the parameters of this function are not the correct type. Uses the [`@typeguard.typechecked`](https://typeguard.readthedocs.io/en/stable/api.html#typeguard.typechecked) decorator.

    Returns:
        (type(None)):
            Nothing is returned.

    ???+ tip "Note"
        You know that this function is successful if the table exists at the specified location, and there are no errors thrown.

    ???+ example "Examples"

        ```{.py .python linenums="1" title="Set up"}
        >>> # Imports
        >>> import pandas as pd
        >>> from pyspark.sql import SparkSession
        >>> from toolbox_pyspark.io import write_to_path
        >>> from toolbox_pyspark.checks import table_exists
        >>>
        >>> # Instantiate Spark
        >>> spark = SparkSession.builder.getOrCreate()
        >>>
        >>> # Create data
        >>> df = spark.createDataFrame(
        ...     pd.DataFrame(
        ...         {
        ...             "a": [1, 2, 3, 4],
        ...             "b": ["a", "b", "c", "d"],
        ...             "c": [1, 1, 1, 1],
        ...             "d": ["2", "2", "2", "2"],
        ...         }
        ...     )
        ... )
        ```

        ```{.py .python linenums="1" title="Check"}
        >>> df.show()
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        +---+---+---+---+
        | a | b | c | d |
        +---+---+---+---+
        | 1 | a | 1 | 2 |
        | 2 | b | 1 | 2 |
        | 3 | c | 1 | 2 |
        | 4 | d | 1 | 2 |
        +---+---+---+---+
        ```
        </div>

        ```{.py .python linenums="1" title="Example 1: Write to CSV"}
        >>> write_to_path(
        ...     data_frame=df,
        ...     name="df.csv",
        ...     path="./test",
        ...     data_format="csv",
        ...     mode="overwrite",
        ...     options={"header": "true"},
        ... )
        >>>
        >>> table_exists(
        ...     name="df.csv",
        ...     path="./test",
        ...     data_format="csv",
        ...     spark_session=df.sparkSession,
        ... )
        ```
        <div class="result" markdown>
        ```{.sh .shell title="Terminal"}
        True
        ```
        !!! success "Conclusion: Successfully written to CSV."
        </div>

        ```{.py .python linenums="1" title="Example 2: Write to Parquet"}
        >>> write_to_path(
        ...     data_frame=df,
        ...     name="df.parquet",
        ...     path="./test",
        ...     data_format="parquet",
        ...     mode="overwrite",
        ... )
        >>>
        >>> table_exists(
        ...     name="df.parquet",
        ...     path="./test",
        ...     data_format="parquet",
        ...     spark_session=df.sparkSession,
        ... )
        ```
        <div class="result" markdown>
        ```{.sh .shell title="Terminal"}
        True
        ```
        !!! success "Conclusion: Successfully written to Parquet."
        </div>

        ```{.py .python linenums="1" title="Example 3: Invalid Path"}
        >>> write_to_path(
        ...     data_frame=df,
        ...     name="df.csv",
        ...     path="./invalid_path",
        ...     data_format="csv",
        ...     mode="overwrite",
        ...     options={"header": "true"},
        ... )
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        Py4JJavaError: An error occurred while calling o45.save.
        ```
        !!! failure "Conclusion: Failed to write to invalid path."
        </div>

        ```{.py .python linenums="1" title="Example 4: Invalid Format"}
        >>> write_to_path(
        ...     data_frame=df,
        ...     name="df.csv",
        ...     path="./test",
        ...     data_format="invalid_format",
        ...     mode="overwrite",
        ...     options={"header": "true"},
        ... )
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        Py4JJavaError: An error occurred while calling o45.save.
        ```
        !!! failure "Conclusion: Failed to write due to invalid format."
        </div>

    ??? tip "See Also"
        - [`save_to_path`][toolbox_pyspark.io.save_to_path]
        - [`write`][toolbox_pyspark.io.write]
        - [`save`][toolbox_pyspark.io.save]
    """

    # Set default options ----
    write_options: str_dict = write_options or dict()
    data_format: str = data_format or "parquet"
    write_path: str = f"{path}{'/' if not path.endswith('/') else ''}{name}"

    # Initialise writer (including data format) ----
    writer: DataFrameWriter = data_frame.write.mode(mode).format(data_format)

    # Add options (if exists) ----
    if write_options:
        writer.options(**write_options)

    # Add partition (if exists) ----
    if partition_cols is not None:
        partition_cols = [partition_cols] if is_type(partition_cols, str) else partition_cols
        writer = writer.partitionBy(list(partition_cols))

    # Write table ----
    writer.save(write_path)

transfer_by_path πŸ”—

transfer_by_path(
    spark_session: SparkSession,
    from_table_path: str,
    from_table_name: str,
    to_table_path: str,
    to_table_name: str,
    from_table_format: Optional[SPARK_FORMATS] = "parquet",
    from_table_options: Optional[str_dict] = None,
    to_table_format: Optional[SPARK_FORMATS] = "parquet",
    to_table_mode: Optional[WRITE_MODES] = None,
    to_table_options: Optional[str_dict] = None,
    to_table_partition_cols: Optional[
        str_collection
    ] = None,
) -> None

Summary

Copy a table from one location to another.

Details

This is a blind transfer. There is no validation, no alteration, no adjustments made at all. Simply read directly from one location and move immediately to another location straight away.

Parameters:

Name Type Description Default
spark_session SparkSession

The spark session to use for the transfer. Necessary in order to instantiate the reading process.

required
from_table_path str

The path from which the table will be read.

required
from_table_name str

The name of the table to be read.

required
to_table_path str

The location where to save the table to.

required
to_table_name str

The name of the table where it will be saved.

required
from_table_format Optional[SPARK_FORMATS]

The format of the data at the reading location.

'parquet'
to_table_format Optional[SPARK_FORMATS]

The format of the saved table.

'parquet'
from_table_options Dict[str, str]

Any additional obtions to parse to the Spark reader.
For more info, check the pyspark docs: pyspark.sql.DataFrameReader.options.
Defaults to dict().

None
to_table_mode Optional[WRITE_MODES]

The behaviour for when the data already exists.
For more info, check the pyspark docs: pyspark.sql.DataFrameWriter.mode.
Defaults to None.

None
to_table_options Dict[str, str]

Any additional settings to parse to the writer class.
For more info, check the pyspark docs: pyspark.sql.DataFrameWriter.options.
Defaults to dict().

None
to_table_partition_cols Optional[Union[str_collection, str]]

The column(s) that the table should partition by.
Defaults to None.

None

Raises:

Type Description
TypeError

If any of the inputs parsed to the parameters of this function are not the correct type. Uses the @typeguard.typechecked decorator.

Returns:

Type Description
type(None)

Nothing is returned.

Note

You know that this function is successful if the table exists at the specified location, and there are no errors thrown.

Examples
Set up
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
>>> # Imports
>>> import pandas as pd
>>> from pyspark.sql import SparkSession
>>> from toolbox_pyspark.io import transfer_by_path
>>> from toolbox_pyspark.checks import table_exists
>>>
>>> # Instantiate Spark
>>> spark = SparkSession.builder.getOrCreate()
>>>
>>> # Create data
>>> df = pd.DataFrame(
...     {
...         "a": [1, 2, 3, 4],
...         "b": ["a", "b", "c", "d"],
...         "c": [1, 1, 1 1],
...         "d": ["2", "2", "2", "2"],
...     }
... )
>>> df.to_csv("./test/table.csv")
>>> df.to_parquet("./test/table.parquet")

Check
1
2
>>> import os
>>> print(os.listdir("./test"))
Terminal
["table.csv", "table.parquet"]

Example 1: Transfer CSV
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
>>> transfer_by_path(
...     spark_session=spark,
...     from_table_path="./test",
...     from_table_name="table.csv",
...     from_table_format="csv",
...     to_table_path="./other",
...     to_table_name="table.csv",
...     to_table_format="csv",
...     from_table_options={"header": "true"},
...     to_table_mode="overwrite",
...     to_table_options={"header": "true"},
... )
>>>
>>> table_exists(
...     name="df.csv",
...     path="./other",
...     data_format="csv",
...     spark_session=spark,
... )
Terminal
True

Conclusion: Successfully transferred CSV to CSV.

Example 2: Transfer Parquet
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
>>> transfer_by_path(
...     spark_session=spark,
...     from_table_path="./test",
...     from_table_name="table.parquet",
...     from_table_format="parquet",
...     to_table_path="./other",
...     to_table_name="table.parquet",
...     to_table_format="parquet",
...     to_table_mode="overwrite",
...     to_table_options={"overwriteSchema": "true"},
... )
>>>
>>> table_exists(
...     name="df.parquet",
...     path="./other",
...     data_format="parquet",
...     spark_session=spark,
... )
Terminal
True

Conclusion: Successfully transferred Parquet to Parquet.

Example 3: Transfer CSV to Parquet
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
>>> transfer_by_path(
...     spark_session=spark,
...     from_table_path="./test",
...     from_table_name="table.csv",
...     from_table_format="csv",
...     to_table_path="./other",
...     to_table_name="table.parquet",
...     to_table_format="parquet",
...     to_table_mode="overwrite",
...     to_table_options={"overwriteSchema": "true"},
... )
>>>
>>> table_exists(
...     name="df.parquet",
...     path="./other",
...     data_format="parquet",
...     spark_session=spark,
... )
Terminal
True

Conclusion: Successfully transferred CSV to Parquet.

Example 4: Invalid Source Path
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
>>> transfer_by_path(
...     spark_session=spark,
...     from_table_path="./invalid_path",
...     from_table_name="table.csv",
...     from_table_format="csv",
...     to_table_path="./other",
...     to_table_name="table.csv",
...     to_table_format="csv",
...     from_table_options={"header": "true"},
...     to_table_mode="overwrite",
...     to_table_options={"header": "true"},
... )
Terminal
Py4JJavaError: An error occurred while calling o45.load.

Conclusion: Failed to transfer due to invalid source path.

Example 5: Invalid Target Format
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
>>> transfer_by_path(
...     spark_session=spark,
...     from_table_path="./test",
...     from_table_name="table.csv",
...     from_table_format="csv",
...     to_table_path="./other",
...     to_table_name="table.csv",
...     to_table_format="invalid_format",
...     from_table_options={"header": "true"},
...     to_table_mode="overwrite",
...     to_table_options={"header": "true"},
... )
Terminal
Py4JJavaError: An error occurred while calling o45.save.

Conclusion: Failed to transfer due to invalid target format.

See Also
Source code in src/toolbox_pyspark/io.py
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
@typechecked
def transfer_by_path(
    spark_session: SparkSession,
    from_table_path: str,
    from_table_name: str,
    to_table_path: str,
    to_table_name: str,
    from_table_format: Optional[SPARK_FORMATS] = "parquet",
    from_table_options: Optional[str_dict] = None,
    to_table_format: Optional[SPARK_FORMATS] = "parquet",
    to_table_mode: Optional[WRITE_MODES] = None,
    to_table_options: Optional[str_dict] = None,
    to_table_partition_cols: Optional[str_collection] = None,
) -> None:
    """
    !!! note "Summary"
        Copy a table from one location to another.

    ???+ abstract "Details"
        This is a blind transfer. There is no validation, no alteration, no adjustments made at all. Simply read directly from one location and move immediately to another location straight away.

    Params:
        spark_session (SparkSession):
            The spark session to use for the transfer. Necessary in order to instantiate the reading process.
        from_table_path (str):
            The path from which the table will be read.
        from_table_name (str):
            The name of the table to be read.
        to_table_path (str):
            The location where to save the table to.
        to_table_name (str):
            The name of the table where it will be saved.
        from_table_format (Optional[SPARK_FORMATS], optional):
            The format of the data at the reading location.
        to_table_format (Optional[SPARK_FORMATS], optional):
            The format of the saved table.
        from_table_options (Dict[str, str], optional):
            Any additional obtions to parse to the Spark reader.<br>
            For more info, check the `pyspark` docs: [`pyspark.sql.DataFrameReader.options`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameReader.options.html).<br>
            Defaults to `#! dict()`.
        to_table_mode (Optional[WRITE_MODES], optional):
            The behaviour for when the data already exists.<br>
            For more info, check the `pyspark` docs: [`pyspark.sql.DataFrameWriter.mode`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameWriter.mode.html).<br>
            Defaults to `#!py None`.
        to_table_options (Dict[str, str], optional):
            Any additional settings to parse to the writer class.<br>
            For more info, check the `pyspark` docs: [`pyspark.sql.DataFrameWriter.options`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameWriter.options.html).<br>
            Defaults to `#! dict()`.
        to_table_partition_cols (Optional[Union[str_collection, str]], optional):
            The column(s) that the table should partition by.<br>
            Defaults to `#!py None`.

    Raises:
        TypeError:
            If any of the inputs parsed to the parameters of this function are not the correct type. Uses the [`@typeguard.typechecked`](https://typeguard.readthedocs.io/en/stable/api.html#typeguard.typechecked) decorator.

    Returns:
        (type(None)):
            Nothing is returned.

    ???+ tip "Note"
        You know that this function is successful if the table exists at the specified location, and there are no errors thrown.

    ???+ example "Examples"

        ```{.py .python linenums="1" title="Set up"}
        >>> # Imports
        >>> import pandas as pd
        >>> from pyspark.sql import SparkSession
        >>> from toolbox_pyspark.io import transfer_by_path
        >>> from toolbox_pyspark.checks import table_exists
        >>>
        >>> # Instantiate Spark
        >>> spark = SparkSession.builder.getOrCreate()
        >>>
        >>> # Create data
        >>> df = pd.DataFrame(
        ...     {
        ...         "a": [1, 2, 3, 4],
        ...         "b": ["a", "b", "c", "d"],
        ...         "c": [1, 1, 1 1],
        ...         "d": ["2", "2", "2", "2"],
        ...     }
        ... )
        >>> df.to_csv("./test/table.csv")
        >>> df.to_parquet("./test/table.parquet")
        ```

        ```{.py .python linenums="1" title="Check"}
        >>> import os
        >>> print(os.listdir("./test"))
        ```
        <div class="result" markdown>
        ```{.sh .shell title="Terminal"}
        ["table.csv", "table.parquet"]
        ```
        </div>

        ```{.py .python linenums="1" title="Example 1: Transfer CSV"}
        >>> transfer_by_path(
        ...     spark_session=spark,
        ...     from_table_path="./test",
        ...     from_table_name="table.csv",
        ...     from_table_format="csv",
        ...     to_table_path="./other",
        ...     to_table_name="table.csv",
        ...     to_table_format="csv",
        ...     from_table_options={"header": "true"},
        ...     to_table_mode="overwrite",
        ...     to_table_options={"header": "true"},
        ... )
        >>>
        >>> table_exists(
        ...     name="df.csv",
        ...     path="./other",
        ...     data_format="csv",
        ...     spark_session=spark,
        ... )
        ```
        <div class="result" markdown>
        ```{.sh .shell title="Terminal"}
        True
        ```
        !!! success "Conclusion: Successfully transferred CSV to CSV."
        </div>

        ```{.py .python linenums="1" title="Example 2: Transfer Parquet"}
        >>> transfer_by_path(
        ...     spark_session=spark,
        ...     from_table_path="./test",
        ...     from_table_name="table.parquet",
        ...     from_table_format="parquet",
        ...     to_table_path="./other",
        ...     to_table_name="table.parquet",
        ...     to_table_format="parquet",
        ...     to_table_mode="overwrite",
        ...     to_table_options={"overwriteSchema": "true"},
        ... )
        >>>
        >>> table_exists(
        ...     name="df.parquet",
        ...     path="./other",
        ...     data_format="parquet",
        ...     spark_session=spark,
        ... )
        ```
        <div class="result" markdown>
        ```{.sh .shell title="Terminal"}
        True
        ```
        !!! success "Conclusion: Successfully transferred Parquet to Parquet."
        </div>

        ```{.py .python linenums="1" title="Example 3: Transfer CSV to Parquet"}
        >>> transfer_by_path(
        ...     spark_session=spark,
        ...     from_table_path="./test",
        ...     from_table_name="table.csv",
        ...     from_table_format="csv",
        ...     to_table_path="./other",
        ...     to_table_name="table.parquet",
        ...     to_table_format="parquet",
        ...     to_table_mode="overwrite",
        ...     to_table_options={"overwriteSchema": "true"},
        ... )
        >>>
        >>> table_exists(
        ...     name="df.parquet",
        ...     path="./other",
        ...     data_format="parquet",
        ...     spark_session=spark,
        ... )
        ```
        <div class="result" markdown>
        ```{.sh .shell title="Terminal"}
        True
        ```
        !!! success "Conclusion: Successfully transferred CSV to Parquet."
        </div>

        ```{.py .python linenums="1" title="Example 4: Invalid Source Path"}
        >>> transfer_by_path(
        ...     spark_session=spark,
        ...     from_table_path="./invalid_path",
        ...     from_table_name="table.csv",
        ...     from_table_format="csv",
        ...     to_table_path="./other",
        ...     to_table_name="table.csv",
        ...     to_table_format="csv",
        ...     from_table_options={"header": "true"},
        ...     to_table_mode="overwrite",
        ...     to_table_options={"header": "true"},
        ... )
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        Py4JJavaError: An error occurred while calling o45.load.
        ```
        !!! failure "Conclusion: Failed to transfer due to invalid source path."
        </div>

        ```{.py .python linenums="1" title="Example 5: Invalid Target Format"}
        >>> transfer_by_path(
        ...     spark_session=spark,
        ...     from_table_path="./test",
        ...     from_table_name="table.csv",
        ...     from_table_format="csv",
        ...     to_table_path="./other",
        ...     to_table_name="table.csv",
        ...     to_table_format="invalid_format",
        ...     from_table_options={"header": "true"},
        ...     to_table_mode="overwrite",
        ...     to_table_options={"header": "true"},
        ... )
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        Py4JJavaError: An error occurred while calling o45.save.
        ```
        !!! failure "Conclusion: Failed to transfer due to invalid target format."
        </div>

    ??? tip "See Also"
        - [`transfer`][toolbox_pyspark.io.transfer]
    """

    # Read from source ----
    from_table: psDataFrame = read_from_path(
        name=from_table_name,
        path=from_table_path,
        spark_session=spark_session,
        data_format=from_table_format,
        read_options=from_table_options,
    )

    # Write to target ----
    write_to_path(
        data_frame=from_table,
        name=to_table_name,
        path=to_table_path,
        data_format=to_table_format,
        mode=to_table_mode,
        write_options=to_table_options,
        partition_cols=to_table_partition_cols,
    )

read_from_table πŸ”—

read_from_table(
    spark_session: SparkSession,
    name: str,
    schema: Optional[str] = None,
    data_format: Optional[SPARK_FORMATS] = "parquet",
    read_options: Optional[str_dict] = None,
) -> psDataFrame

Summary

Read a table from a given schema and name into memory as a pyspark dataframe.

Details
  • If schema is None, then we would expect the name to contain both the schema and the table name in the same. Like: schema.name, for example production.orders.
  • Else, if schema is not None, then we would expect the schema to (quite logically) contain the name of the schema, and the name to contain the name of the table.

Parameters:

Name Type Description Default
spark_session SparkSession

The Spark session to use for the reading.

required
name str

The name of the table to read in.

required
schema Optional[str]

The schema of the table to read in.
Defaults to None.

None
data_format Optional[SPARK_FORMATS]

The format of the table.
Defaults to "parquet".

'parquet'
read_options Dict[str, str]

Any additional options to parse to the Spark reader.
For more info, check the pyspark docs: pyspark.sql.DataFrameReader.options.
Defaults to dict().

None

Raises:

Type Description
TypeError

If any of the inputs parsed to the parameters of this function are not the correct type. Uses the @typeguard.typechecked decorator.

ValidationError

If name contains /, or is structured with three elements like: source.schema.table.

Returns:

Type Description
DataFrame

The loaded dataframe.

Examples
Set up
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
>>> # Imports
>>> import pandas as pd
>>> from pyspark.sql import SparkSession
>>> from toolbox_pyspark.io import read_from_table
>>>
>>> # Instantiate Spark
>>> spark = SparkSession.builder.getOrCreate()
>>>
>>> # Create data
>>> df = pd.DataFrame(
...     {
...         "a": [1, 2, 3, 4],
...         "b": ["a", "b", "c", "d"],
...         "c": [1, 1, 1, 1],
...         "d": ["2", "2", "2", "2"],
...     }
... )
>>> df.to_parquet("./test/table.parquet")
>>> spark.read.parquet("./test/table.parquet").createOrReplaceTempView("test_table")

Example 1: Read Table
1
2
3
4
5
6
7
>>> df_table = read_from_table(
...     name="test_table",
...     spark_session=spark,
...     data_format="parquet",
... )
>>>
>>> df_table.show()
Terminal
+---+---+---+---+
| a | b | c | d |
+---+---+---+---+
| 1 | a | 1 | 2 |
| 2 | b | 1 | 2 |
| 3 | c | 1 | 2 |
| 4 | d | 1 | 2 |
+---+---+---+---+

Conclusion: Successfully read table.

Example 2: Invalid table structure
1
2
3
4
5
6
>>> df_table = read_from_table(
...     name="schema.test_table",
...     schema="source",
...     spark_session=spark,
...     data_format="parquet",
... )
Terminal
Invalid table. Should be in the format `schema.table`: `source.schema.test_table`.

Conclusion: Failed to write to table due to invalid table structure.

See Also
Source code in src/toolbox_pyspark/io.py
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
@typechecked
def read_from_table(
    spark_session: SparkSession,
    name: str,
    schema: Optional[str] = None,
    data_format: Optional[SPARK_FORMATS] = "parquet",
    read_options: Optional[str_dict] = None,
) -> psDataFrame:
    """
    !!! note "Summary"
        Read a table from a given `schema` and `name` into memory as a `pyspark` dataframe.

    ???+ abstract "Details"
        - If `schema` is `#!py None`, then we would expect the `name` to contain both the schema and the table name in the same. Like: `schema.name`, for example `production.orders`.
        - Else, if `schema` is not `#! None`, then we would expect the `schema` to (quite logically) contain the name of the schema, and the `name` to contain the name of the table.

    Params:
        spark_session (SparkSession):
            The Spark session to use for the reading.
        name (str):
            The name of the table to read in.
        schema (Optional[str], optional):
            The schema of the table to read in.<br>
            Defaults to `#!py None`.
        data_format (Optional[SPARK_FORMATS], optional):
            The format of the table.<br>
            Defaults to `#!py "parquet"`.
        read_options (Dict[str, str], optional):
            Any additional options to parse to the Spark reader.<br>
            For more info, check the `pyspark` docs: [`pyspark.sql.DataFrameReader.options`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameReader.options.html).<br>
            Defaults to `#!py dict()`.

    Raises:
        TypeError:
            If any of the inputs parsed to the parameters of this function are not the correct type. Uses the [`@typeguard.typechecked`](https://typeguard.readthedocs.io/en/stable/api.html#typeguard.typechecked) decorator.
        ValidationError:
            If `name` contains `/`, or is structured with three elements like: `source.schema.table`.

    Returns:
        (psDataFrame):
            The loaded dataframe.

    ???+ example "Examples"

        ```{.py .python linenums="1" title="Set up"}
        >>> # Imports
        >>> import pandas as pd
        >>> from pyspark.sql import SparkSession
        >>> from toolbox_pyspark.io import read_from_table
        >>>
        >>> # Instantiate Spark
        >>> spark = SparkSession.builder.getOrCreate()
        >>>
        >>> # Create data
        >>> df = pd.DataFrame(
        ...     {
        ...         "a": [1, 2, 3, 4],
        ...         "b": ["a", "b", "c", "d"],
        ...         "c": [1, 1, 1, 1],
        ...         "d": ["2", "2", "2", "2"],
        ...     }
        ... )
        >>> df.to_parquet("./test/table.parquet")
        >>> spark.read.parquet("./test/table.parquet").createOrReplaceTempView("test_table")
        ```

        ```{.py .python linenums="1" title="Example 1: Read Table"}
        >>> df_table = read_from_table(
        ...     name="test_table",
        ...     spark_session=spark,
        ...     data_format="parquet",
        ... )
        >>>
        >>> df_table.show()
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        +---+---+---+---+
        | a | b | c | d |
        +---+---+---+---+
        | 1 | a | 1 | 2 |
        | 2 | b | 1 | 2 |
        | 3 | c | 1 | 2 |
        | 4 | d | 1 | 2 |
        +---+---+---+---+
        ```
        !!! success "Conclusion: Successfully read table."
        </div>

        ```{.py .python linenums="1" title="Example 2: Invalid table structure"}
        >>> df_table = read_from_table(
        ...     name="schema.test_table",
        ...     schema="source",
        ...     spark_session=spark,
        ...     data_format="parquet",
        ... )
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        Invalid table. Should be in the format `schema.table`: `source.schema.test_table`.
        ```
        !!! failure "Conclusion: Failed to write to table due to invalid table structure."
        </div>

    ??? tip "See Also"
        - [`save_to_table`][toolbox_pyspark.io.save_to_table]
        - [`write`][toolbox_pyspark.io.write]
        - [`save`][toolbox_pyspark.io.save]
    """

    # Set default options ----
    data_format: str = data_format or "parquet"
    table: str = name if not schema else f"{schema}.{name}"

    # Validate that `table` is in the correct format ----
    _validate_table_name(table)

    # Initialise reader (including data format) ----
    reader: DataFrameReader = spark_session.read.format(data_format)

    # Add options (if exists) ----
    if read_options:
        reader.options(**read_options)

    # Load DataFrame ----
    return reader.table(table)

write_to_table πŸ”—

write_to_table(
    data_frame: psDataFrame,
    name: str,
    schema: Optional[str] = None,
    data_format: Optional[SPARK_FORMATS] = "parquet",
    mode: Optional[WRITE_MODES] = None,
    write_options: Optional[str_dict] = None,
    partition_cols: Optional[str_collection] = None,
) -> None

Summary

For a given data_frame, write it out to a specified schema and name with format data_format.

Details
  • If schema is None, then we would expect the name to contain both the schema and the table name in the same. Like: schema.name, for example production.orders.
  • Else, if schema is not None, then we would expect the schema to (quite logically) contain the name of the schema, and the name to contain the name of the table.

Parameters:

Name Type Description Default
data_frame DataFrame

The DataFrame to be written. Must be a valid pyspark DataFrame (pyspark.sql.DataFrame).

required
name str

The name of the table where it will be written.

required
schema Optional[str]

The schema of the table where it will be written.
Defaults to None.

None
data_format Optional[SPARK_FORMATS]

The format that the data_frame will be written to.
Defaults to "parquet".

'parquet'
mode Optional[WRITE_MODES]

The behaviour for when the data already exists.
For more info, check the pyspark docs: pyspark.sql.DataFrameWriter.mode.
Defaults to None.

None
write_options Dict[str, str]

Any additional settings to parse to the writer class.
Like, for example:

  • If you are writing to a Delta object, and wanted to overwrite the schema: {"overwriteSchema": "true"}.
  • If you're writing to a CSV file, and wanted to specify the header row: {"header": "true"}.

For more info, check the pyspark docs: pyspark.sql.DataFrameWriter.options.
Defaults to dict().

None
partition_cols Optional[Union[str_collection, str]]

The column(s) that the table should partition by.
Defaults to None.

None

Raises:

Type Description
TypeError

If any of the inputs parsed to the parameters of this function are not the correct type. Uses the @typeguard.typechecked decorator.

ValidationError

If name contains /, or is structured with three elements like: source.schema.table.

Returns:

Type Description
type(None)

Nothing is returned.

Note

You know that this function is successful if the table exists at the specified location, and there are no errors thrown.

Examples
Set up
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
>>> # Imports
>>> import pandas as pd
>>> from pyspark.sql import SparkSession
>>> from toolbox_pyspark.io import write_to_table
>>> from toolbox_pyspark.checks import table_exists
>>>
>>> # Instantiate Spark
>>> spark = SparkSession.builder.getOrCreate()
>>>
>>> # Create data
>>> df = spark.createDataFrame(
...     pd.DataFrame(
...         {
...             "a": [1, 2, 3, 4],
...             "b": ["a", "b", "c", "d"],
...             "c": [1, 1, 1, 1],
...             "d": ["2", "2", "2", "2"],
...         }
...     )
... )

Check
1
>>> df.show()
Terminal
+---+---+---+---+
| a | b | c | d |
+---+---+---+---+
| 1 | a | 1 | 2 |
| 2 | b | 1 | 2 |
| 3 | c | 1 | 2 |
| 4 | d | 1 | 2 |
+---+---+---+---+

Example 1: Write to Table
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
>>> write_to_table(
...     data_frame=df,
...     name="test_table",
...     schema="default",
...     data_format="parquet",
...     mode="overwrite",
... )
>>>
>>> table_exists(
...     name="test_table",
...     schema="default",
...     data_format="parquet",
...     spark_session=df.sparkSession,
... )
Terminal
True

Conclusion: Successfully written to table.

Example 2: Invalid table structure
1
2
3
4
5
6
7
>>> write_to_table(
...     data_frame=df,
...     name="schema.test_table",
...     schema="source",
...     data_format="parquet",
...     mode="overwrite",
... )
Terminal
Invalid table. Should be in the format `schema.table`: `source.schema.test_table`.

Conclusion: Failed to write to table due to invalid table structure.

See Also
Source code in src/toolbox_pyspark/io.py
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
@typechecked
def write_to_table(
    data_frame: psDataFrame,
    name: str,
    schema: Optional[str] = None,
    data_format: Optional[SPARK_FORMATS] = "parquet",
    mode: Optional[WRITE_MODES] = None,
    write_options: Optional[str_dict] = None,
    partition_cols: Optional[str_collection] = None,
) -> None:
    """
    !!! note "Summary"
        For a given `data_frame`, write it out to a specified `schema` and `name` with format `data_format`.

    ???+ abstract "Details"
        - If `schema` is `#!py None`, then we would expect the `name` to contain both the schema and the table name in the same. Like: `schema.name`, for example `production.orders`.
        - Else, if `schema` is not `#! None`, then we would expect the `schema` to (quite logically) contain the name of the schema, and the `name` to contain the name of the table.

    Params:
        data_frame (psDataFrame):
            The DataFrame to be written. Must be a valid `pyspark` DataFrame ([`pyspark.sql.DataFrame`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrame.html)).
        name (str):
            The name of the table where it will be written.
        schema (Optional[str], optional):
            The schema of the table where it will be written.<br>
            Defaults to `#!py None`.
        data_format (Optional[SPARK_FORMATS], optional):
            The format that the `data_frame` will be written to.<br>
            Defaults to `#!py "parquet"`.
        mode (Optional[WRITE_MODES], optional):
            The behaviour for when the data already exists.<br>
            For more info, check the `pyspark` docs: [`pyspark.sql.DataFrameWriter.mode`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameWriter.mode.html).<br>
            Defaults to `#!py None`.
        write_options (Dict[str, str], optional):
            Any additional settings to parse to the writer class.<br>
            Like, for example:

            - If you are writing to a Delta object, and wanted to overwrite the schema: `#!py {"overwriteSchema": "true"}`.
            - If you're writing to a CSV file, and wanted to specify the header row: `#!py {"header": "true"}`.

            For more info, check the `pyspark` docs: [`pyspark.sql.DataFrameWriter.options`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameWriter.options.html).<br>
            Defaults to `#!py dict()`.
        partition_cols (Optional[Union[str_collection, str]], optional):
            The column(s) that the table should partition by.<br>
            Defaults to `#!py None`.

    Raises:
        TypeError:
            If any of the inputs parsed to the parameters of this function are not the correct type. Uses the [`@typeguard.typechecked`](https://typeguard.readthedocs.io/en/stable/api.html#typeguard.typechecked) decorator.
        ValidationError:
            If `name` contains `/`, or is structured with three elements like: `source.schema.table`.

    Returns:
        (type(None)):
            Nothing is returned.

    ???+ tip "Note"
        You know that this function is successful if the table exists at the specified location, and there are no errors thrown.

    ???+ example "Examples"

        ```{.py .python linenums="1" title="Set up"}
        >>> # Imports
        >>> import pandas as pd
        >>> from pyspark.sql import SparkSession
        >>> from toolbox_pyspark.io import write_to_table
        >>> from toolbox_pyspark.checks import table_exists
        >>>
        >>> # Instantiate Spark
        >>> spark = SparkSession.builder.getOrCreate()
        >>>
        >>> # Create data
        >>> df = spark.createDataFrame(
        ...     pd.DataFrame(
        ...         {
        ...             "a": [1, 2, 3, 4],
        ...             "b": ["a", "b", "c", "d"],
        ...             "c": [1, 1, 1, 1],
        ...             "d": ["2", "2", "2", "2"],
        ...         }
        ...     )
        ... )
        ```

        ```{.py .python linenums="1" title="Check"}
        >>> df.show()
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        +---+---+---+---+
        | a | b | c | d |
        +---+---+---+---+
        | 1 | a | 1 | 2 |
        | 2 | b | 1 | 2 |
        | 3 | c | 1 | 2 |
        | 4 | d | 1 | 2 |
        +---+---+---+---+
        ```
        </div>

        ```{.py .python linenums="1" title="Example 1: Write to Table"}
        >>> write_to_table(
        ...     data_frame=df,
        ...     name="test_table",
        ...     schema="default",
        ...     data_format="parquet",
        ...     mode="overwrite",
        ... )
        >>>
        >>> table_exists(
        ...     name="test_table",
        ...     schema="default",
        ...     data_format="parquet",
        ...     spark_session=df.sparkSession,
        ... )
        ```
        <div class="result" markdown>
        ```{.sh .shell title="Terminal"}
        True
        ```
        !!! success "Conclusion: Successfully written to table."
        </div>

        ```{.py .python linenums="1" title="Example 2: Invalid table structure"}
        >>> write_to_table(
        ...     data_frame=df,
        ...     name="schema.test_table",
        ...     schema="source",
        ...     data_format="parquet",
        ...     mode="overwrite",
        ... )
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        Invalid table. Should be in the format `schema.table`: `source.schema.test_table`.
        ```
        !!! failure "Conclusion: Failed to write to table due to invalid table structure."
        </div>

    ??? tip "See Also"
        - [`save_to_table`][toolbox_pyspark.io.save_to_table]
        - [`write`][toolbox_pyspark.io.write]
        - [`save`][toolbox_pyspark.io.save]
    """

    # Set default options ----
    write_options: str_dict = write_options or dict()
    data_format: str = data_format or "parquet"
    table: str = name if not schema else f"{schema}.{name}"

    # Validate that `table` is in the correct format ----
    _validate_table_name(table)

    # Initialise writer (including data format) ----
    writer: DataFrameWriter = data_frame.write.mode(mode).format(data_format)

    # Add options (if exists) ----
    if write_options:
        writer.options(**write_options)

    # Add partition (if exists) ----
    if partition_cols is not None:
        partition_cols = [partition_cols] if is_type(partition_cols, str) else partition_cols
        writer = writer.partitionBy(list(partition_cols))

    # Write table ----
    writer.saveAsTable(table)

transfer_by_table πŸ”—

transfer_by_table(
    spark_session: SparkSession,
    from_table_name: str,
    to_table_name: str,
    from_table_schema: Optional[str] = None,
    from_table_format: Optional[SPARK_FORMATS] = "parquet",
    from_table_options: Optional[str_dict] = None,
    to_table_schema: Optional[str] = None,
    to_table_format: Optional[SPARK_FORMATS] = "parquet",
    to_table_mode: Optional[WRITE_MODES] = None,
    to_table_options: Optional[str_dict] = None,
    to_table_partition_cols: Optional[
        str_collection
    ] = None,
) -> None

Summary

Copy a table from one schema and name to another schema and name.

Details

This is a blind transfer. There is no validation, no alteration, no adjustments made at all. Simply read directly from one table and move immediately to another table straight away.

Parameters:

Name Type Description Default
spark_session SparkSession

The spark session to use for the transfer. Necessary in order to instantiate the reading process.

required
from_table_name str

The name of the table to be read.

required
to_table_name str

The name of the table where it will be saved.

required
from_table_schema Optional[str]

The schema of the table to be read.
Defaults to None.

None
from_table_format Optional[SPARK_FORMATS]

The format of the data at the reading location.
Defaults to "parquet".

'parquet'
from_table_options Dict[str, str]

Any additional options to parse to the Spark reader.
For more info, check the pyspark docs: pyspark.sql.DataFrameReader.options.
Defaults to dict().

None
to_table_schema Optional[str]

The schema of the table where it will be saved.
Defaults to None.

None
to_table_format Optional[SPARK_FORMATS]

The format of the saved table.
Defaults to "parquet".

'parquet'
to_table_mode Optional[WRITE_MODES]

The behaviour for when the data already exists.
For more info, check the pyspark docs: pyspark.sql.DataFrameWriter.mode.
Defaults to None.

None
to_table_options Dict[str, str]

Any additional settings to parse to the writer class.
For more info, check the pyspark docs: pyspark.sql.DataFrameWriter.options.
Defaults to dict().

None
to_table_partition_cols Optional[Union[str_collection, str]]

The column(s) that the table should partition by.
Defaults to None.

None

Raises:

Type Description
TypeError

If any of the inputs parsed to the parameters of this function are not the correct type. Uses the @typeguard.typechecked decorator.

Returns:

Type Description
type(None)

Nothing is returned.

Note

You know that this function is successful if the table exists at the specified location, and there are no errors thrown.

Examples
Set up
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
>>> # Imports
>>> import pandas as pd
>>> from pyspark.sql import SparkSession
>>> from toolbox_pyspark.io import transfer_by_table
>>> from toolbox_pyspark.checks import table_exists
>>>
>>> # Instantiate Spark
>>> spark = SparkSession.builder.getOrCreate()
>>>
>>> # Create data
>>> df = pd.DataFrame(
...     {
...         "a": [1, 2, 3, 4],
...         "b": ["a", "b", "c", "d"],
...         "c": [1, 1, 1, 1],
...         "d": ["2", "2", "2", "2"],
...     }
... )
>>> df.to_parquet("./test/table.parquet")
>>> spark.read.parquet("./test/table.parquet").createOrReplaceTempView("test_table")

Example 1: Transfer Table
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
>>> transfer_by_table(
...     spark_session=spark,
...     from_table_name="test_table",
...     from_table_schema="default",
...     from_table_format="parquet",
...     to_table_name="new_table",
...     to_table_schema="default",
...     to_table_format="parquet",
...     to_table_mode="overwrite",
... )
>>>
>>> table_exists(
...     name="new_table",
...     schema="default",
...     data_format="parquet",
...     spark_session=spark,
... )
Terminal
True

Conclusion: Successfully transferred table.

Example 2: Invalid table structure
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
>>> transfer_by_table(
...     spark_session=spark,
...     from_table_name="schema.test_table",
...     from_table_schema="source",
...     from_table_format="parquet",
...     to_table_name="new_table",
...     to_table_schema="default",
...     to_table_format="parquet",
...     to_table_mode="overwrite",
... )
Terminal
Invalid table. Should be in the format `schema.table`: `source.schema.test_table`.

Conclusion: Failed to transfer table due to invalid table structure.

See Also
Source code in src/toolbox_pyspark/io.py
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
@typechecked
def transfer_by_table(
    spark_session: SparkSession,
    from_table_name: str,
    to_table_name: str,
    from_table_schema: Optional[str] = None,
    from_table_format: Optional[SPARK_FORMATS] = "parquet",
    from_table_options: Optional[str_dict] = None,
    to_table_schema: Optional[str] = None,
    to_table_format: Optional[SPARK_FORMATS] = "parquet",
    to_table_mode: Optional[WRITE_MODES] = None,
    to_table_options: Optional[str_dict] = None,
    to_table_partition_cols: Optional[str_collection] = None,
) -> None:
    """
    !!! note "Summary"
        Copy a table from one schema and name to another schema and name.

    ???+ abstract "Details"
        This is a blind transfer. There is no validation, no alteration, no adjustments made at all. Simply read directly from one table and move immediately to another table straight away.

    Params:
        spark_session (SparkSession):
            The spark session to use for the transfer. Necessary in order to instantiate the reading process.
        from_table_name (str):
            The name of the table to be read.
        to_table_name (str):
            The name of the table where it will be saved.
        from_table_schema (Optional[str], optional):
            The schema of the table to be read.<br>
            Defaults to `#!py None`.
        from_table_format (Optional[SPARK_FORMATS], optional):
            The format of the data at the reading location.<br>
            Defaults to `#!py "parquet"`.
        from_table_options (Dict[str, str], optional):
            Any additional options to parse to the Spark reader.<br>
            For more info, check the `pyspark` docs: [`pyspark.sql.DataFrameReader.options`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameReader.options.html).<br>
            Defaults to `#!py dict()`.
        to_table_schema (Optional[str], optional):
            The schema of the table where it will be saved.<br>
            Defaults to `#!py None`.
        to_table_format (Optional[SPARK_FORMATS], optional):
            The format of the saved table.<br>
            Defaults to `#!py "parquet"`.
        to_table_mode (Optional[WRITE_MODES], optional):
            The behaviour for when the data already exists.<br>
            For more info, check the `pyspark` docs: [`pyspark.sql.DataFrameWriter.mode`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameWriter.mode.html).<br>
            Defaults to `#!py None`.
        to_table_options (Dict[str, str], optional):
            Any additional settings to parse to the writer class.<br>
            For more info, check the `pyspark` docs: [`pyspark.sql.DataFrameWriter.options`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameWriter.options.html).<br>
            Defaults to `#!py dict()`.
        to_table_partition_cols (Optional[Union[str_collection, str]], optional):
            The column(s) that the table should partition by.<br>
            Defaults to `#!py None`.

    Raises:
        TypeError:
            If any of the inputs parsed to the parameters of this function are not the correct type. Uses the [`@typeguard.typechecked`](https://typeguard.readthedocs.io/en/stable/api.html#typeguard.typechecked) decorator.

    Returns:
        (type(None)):
            Nothing is returned.

    ???+ tip "Note"
        You know that this function is successful if the table exists at the specified location, and there are no errors thrown.

    ???+ example "Examples"

        ```{.py .python linenums="1" title="Set up"}
        >>> # Imports
        >>> import pandas as pd
        >>> from pyspark.sql import SparkSession
        >>> from toolbox_pyspark.io import transfer_by_table
        >>> from toolbox_pyspark.checks import table_exists
        >>>
        >>> # Instantiate Spark
        >>> spark = SparkSession.builder.getOrCreate()
        >>>
        >>> # Create data
        >>> df = pd.DataFrame(
        ...     {
        ...         "a": [1, 2, 3, 4],
        ...         "b": ["a", "b", "c", "d"],
        ...         "c": [1, 1, 1, 1],
        ...         "d": ["2", "2", "2", "2"],
        ...     }
        ... )
        >>> df.to_parquet("./test/table.parquet")
        >>> spark.read.parquet("./test/table.parquet").createOrReplaceTempView("test_table")
        ```

        ```{.py .python linenums="1" title="Example 1: Transfer Table"}
        >>> transfer_by_table(
        ...     spark_session=spark,
        ...     from_table_name="test_table",
        ...     from_table_schema="default",
        ...     from_table_format="parquet",
        ...     to_table_name="new_table",
        ...     to_table_schema="default",
        ...     to_table_format="parquet",
        ...     to_table_mode="overwrite",
        ... )
        >>>
        >>> table_exists(
        ...     name="new_table",
        ...     schema="default",
        ...     data_format="parquet",
        ...     spark_session=spark,
        ... )
        ```
        <div class="result" markdown>
        ```{.sh .shell title="Terminal"}
        True
        ```
        !!! success "Conclusion: Successfully transferred table."
        </div>

        ```{.py .python linenums="1" title="Example 2: Invalid table structure"}
        >>> transfer_by_table(
        ...     spark_session=spark,
        ...     from_table_name="schema.test_table",
        ...     from_table_schema="source",
        ...     from_table_format="parquet",
        ...     to_table_name="new_table",
        ...     to_table_schema="default",
        ...     to_table_format="parquet",
        ...     to_table_mode="overwrite",
        ... )
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        Invalid table. Should be in the format `schema.table`: `source.schema.test_table`.
        ```
        !!! failure "Conclusion: Failed to transfer table due to invalid table structure."
        </div>

    ??? tip "See Also"
        - [`transfer`][toolbox_pyspark.io.transfer]
    """

    # Read from source ----
    source_table: psDataFrame = read_from_table(
        name=from_table_name,
        schema=from_table_schema,
        spark_session=spark_session,
        data_format=from_table_format,
        read_options=from_table_options,
    )

    # Write to target ----
    write_to_table(
        data_frame=source_table,
        name=to_table_name,
        schema=to_table_schema,
        data_format=to_table_format,
        mode=to_table_mode,
        write_options=to_table_options,
        partition_cols=to_table_partition_cols,
    )

read πŸ”—

read(
    spark_session: SparkSession,
    name: str,
    method: Literal["table", "path"],
    path: Optional[str] = None,
    schema: Optional[str] = None,
    data_format: Optional[SPARK_FORMATS] = "parquet",
    read_options: Optional[str_dict] = None,
) -> psDataFrame

Summary

Read a table or file from a given path or schema and name into memory as a pyspark dataframe.

Details

This function serves as a unified interface for reading data into a pyspark dataframe. Depending on the method parameter, it will either read from a file path or a table.

  • If method is "path", the function will use the read_from_path function to read the data from the specified path and name.
  • If method is "table", the function will use the read_from_table function to read the data from the specified schema and name.

Parameters:

Name Type Description Default
spark_session SparkSession

The Spark session to use for the reading.

required
name str

The name of the table or file to read in.

required
method Literal['table', 'path']

The method to use for reading the data. Either "table" or "path".

required
path Optional[str]

The path from which the file will be read. Required if method is "path".
Defaults to None.

None
schema Optional[str]

The schema of the table to read in. Required if method is "table".
Defaults to None.

None
data_format Optional[SPARK_FORMATS]

The format of the data.
Defaults to "parquet".

'parquet'
read_options Dict[str, str]

Any additional options to parse to the Spark reader.
For more info, check the pyspark docs: pyspark.sql.DataFrameReader.options.
Defaults to dict().

None

Raises:

Type Description
TypeError

If any of the inputs parsed to the parameters of this function are not the correct type. Uses the @typeguard.typechecked decorator.

ValidationError

If name contains /, or is structured with three elements like: source.schema.table.

Returns:

Type Description
DataFrame

The loaded dataframe.

Examples
Set up
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
>>> # Imports
>>> import pandas as pd
>>> from pyspark.sql import SparkSession
>>> from toolbox_pyspark.io import read
>>>
>>> # Instantiate Spark
>>> spark = SparkSession.builder.getOrCreate()
>>>
>>> # Create data
>>> df = pd.DataFrame(
...     {
...         "a": [1, 2, 3, 4],
...         "b": ["a", "b", "c", "d"],
...         "c": [1, 1, 1, 1],
...         "d": ["2", "2", "2", "2"],
...     }
... )
>>> df.to_csv("./test/table.csv")
>>> df.to_parquet("./test/table.parquet")
>>> spark.read.parquet("./test/table.parquet").createOrReplaceTempView("test_table")

Example 1: Read from Path
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
>>> df_path = read(
...     spark_session=spark,
...     name="table.csv",
...     method="path",
...     path="./test",
...     data_format="csv",
...     read_options={"header": "true"},
... )
>>>
>>> df_path.show()
Terminal
+---+---+---+---+
| a | b | c | d |
+---+---+---+---+
| 1 | a | 1 | 2 |
| 2 | b | 1 | 2 |
| 3 | c | 1 | 2 |
| 4 | d | 1 | 2 |
+---+---+---+---+

Conclusion: Successfully read from path.

Example 2: Read from Table
1
2
3
4
5
6
7
8
9
>>> df_table = read(
...     spark_session=spark,
...     name="test_table",
...     method="table",
...     schema="default",
...     data_format="parquet",
... )
>>>
>>> df_table.show()
Terminal
+---+---+---+---+
| a | b | c | d |
+---+---+---+---+
| 1 | a | 1 | 2 |
| 2 | b | 1 | 2 |
| 3 | c | 1 | 2 |
| 4 | d | 1 | 2 |
+---+---+---+---+

Conclusion: Successfully read from table.

Example 3: Invalid Path
1
2
3
4
5
6
7
8
>>> df_invalid_path = read(
...     spark_session=spark,
...     name="invalid_table.csv",
...     method="path",
...     path="./invalid_path",
...     data_format="csv",
...     read_options={"header": "true"},
... )
Terminal
Py4JJavaError: An error occurred while calling o45.load.

Conclusion: Failed to read from invalid path.

Example 4: Invalid Table Structure
1
2
3
4
5
6
7
>>> df_invalid_table = read(
...     spark_session=spark,
...     name="schema.invalid_table",
...     method="table",
...     schema="source",
...     data_format="parquet",
... )
Terminal
Invalid table. Should be in the format `schema.table`: `source.schema.invalid_table`.

Conclusion: Failed to read from invalid table structure.

See Also
Source code in src/toolbox_pyspark/io.py
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
@typechecked
def read(
    spark_session: SparkSession,
    name: str,
    method: Literal["table", "path"],
    path: Optional[str] = None,
    schema: Optional[str] = None,
    data_format: Optional[SPARK_FORMATS] = "parquet",
    read_options: Optional[str_dict] = None,
) -> psDataFrame:
    """
    !!! note "Summary"
        Read a table or file from a given `path` or `schema` and `name` into memory as a `pyspark` dataframe.

    ???+ abstract "Details"
        This function serves as a unified interface for reading data into a `pyspark` dataframe. Depending on the `method` parameter, it will either read from a file path or a table.

        - If `method` is `#!py "path"`, the function will use the `read_from_path` function to read the data from the specified `path` and `name`.
        - If `method` is `#!py "table"`, the function will use the `read_from_table` function to read the data from the specified `schema` and `name`.

    Params:
        spark_session (SparkSession):
            The Spark session to use for the reading.
        name (str):
            The name of the table or file to read in.
        method (Literal["table", "path"]):
            The method to use for reading the data. Either `#!py "table"` or `#!py "path"`.
        path (Optional[str], optional):
            The path from which the file will be read. Required if `method` is `#!py "path"`.<br>
            Defaults to `#!py None`.
        schema (Optional[str], optional):
            The schema of the table to read in. Required if `method` is `#!py "table"`.<br>
            Defaults to `#!py None`.
        data_format (Optional[SPARK_FORMATS], optional):
            The format of the data.<br>
            Defaults to `#!py "parquet"`.
        read_options (Dict[str, str], optional):
            Any additional options to parse to the Spark reader.<br>
            For more info, check the `pyspark` docs: [`pyspark.sql.DataFrameReader.options`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameReader.options.html).<br>
            Defaults to `#!py dict()`.

    Raises:
        TypeError:
            If any of the inputs parsed to the parameters of this function are not the correct type. Uses the [`@typeguard.typechecked`](https://typeguard.readthedocs.io/en/stable/api.html#typeguard.typechecked) decorator.
        ValidationError:
            If `name` contains `/`, or is structured with three elements like: `source.schema.table`.

    Returns:
        (psDataFrame):
            The loaded dataframe.

    ???+ example "Examples"

        ```{.py .python linenums="1" title="Set up"}
        >>> # Imports
        >>> import pandas as pd
        >>> from pyspark.sql import SparkSession
        >>> from toolbox_pyspark.io import read
        >>>
        >>> # Instantiate Spark
        >>> spark = SparkSession.builder.getOrCreate()
        >>>
        >>> # Create data
        >>> df = pd.DataFrame(
        ...     {
        ...         "a": [1, 2, 3, 4],
        ...         "b": ["a", "b", "c", "d"],
        ...         "c": [1, 1, 1, 1],
        ...         "d": ["2", "2", "2", "2"],
        ...     }
        ... )
        >>> df.to_csv("./test/table.csv")
        >>> df.to_parquet("./test/table.parquet")
        >>> spark.read.parquet("./test/table.parquet").createOrReplaceTempView("test_table")
        ```

        ```{.py .python linenums="1" title="Example 1: Read from Path"}
        >>> df_path = read(
        ...     spark_session=spark,
        ...     name="table.csv",
        ...     method="path",
        ...     path="./test",
        ...     data_format="csv",
        ...     read_options={"header": "true"},
        ... )
        >>>
        >>> df_path.show()
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        +---+---+---+---+
        | a | b | c | d |
        +---+---+---+---+
        | 1 | a | 1 | 2 |
        | 2 | b | 1 | 2 |
        | 3 | c | 1 | 2 |
        | 4 | d | 1 | 2 |
        +---+---+---+---+
        ```
        !!! success "Conclusion: Successfully read from path."
        </div>

        ```{.py .python linenums="1" title="Example 2: Read from Table"}
        >>> df_table = read(
        ...     spark_session=spark,
        ...     name="test_table",
        ...     method="table",
        ...     schema="default",
        ...     data_format="parquet",
        ... )
        >>>
        >>> df_table.show()
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        +---+---+---+---+
        | a | b | c | d |
        +---+---+---+---+
        | 1 | a | 1 | 2 |
        | 2 | b | 1 | 2 |
        | 3 | c | 1 | 2 |
        | 4 | d | 1 | 2 |
        +---+---+---+---+
        ```
        !!! success "Conclusion: Successfully read from table."
        </div>

        ```{.py .python linenums="1" title="Example 3: Invalid Path"}
        >>> df_invalid_path = read(
        ...     spark_session=spark,
        ...     name="invalid_table.csv",
        ...     method="path",
        ...     path="./invalid_path",
        ...     data_format="csv",
        ...     read_options={"header": "true"},
        ... )
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        Py4JJavaError: An error occurred while calling o45.load.
        ```
        !!! failure "Conclusion: Failed to read from invalid path."
        </div>

        ```{.py .python linenums="1" title="Example 4: Invalid Table Structure"}
        >>> df_invalid_table = read(
        ...     spark_session=spark,
        ...     name="schema.invalid_table",
        ...     method="table",
        ...     schema="source",
        ...     data_format="parquet",
        ... )
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        Invalid table. Should be in the format `schema.table`: `source.schema.invalid_table`.
        ```
        !!! failure "Conclusion: Failed to read from invalid table structure."
        </div>

    ??? tip "See Also"
        - [`read_from_path`][toolbox_pyspark.io.read_from_path]
        - [`read_from_table`][toolbox_pyspark.io.read_from_table]
        - [`load`][toolbox_pyspark.io.load]
    """

    if method == "table":
        return read_from_table(
            spark_session=spark_session,
            name=name,
            schema=schema,
            data_format=data_format,
            read_options=read_options,
        )
    if method == "path":
        return read_from_path(
            spark_session=spark_session,
            name=name,
            path=path,
            data_format=data_format,
            read_options=read_options,
        )

write πŸ”—

write(
    data_frame: psDataFrame,
    name: str,
    method: Literal["table", "path"],
    path: Optional[str] = None,
    schema: Optional[str] = None,
    data_format: Optional[SPARK_FORMATS] = "parquet",
    mode: Optional[WRITE_MODES] = None,
    write_options: Optional[str_dict] = None,
    partition_cols: Optional[str_collection] = None,
) -> None

Summary

Write a dataframe to a specified path or schema and name with format data_format.

Details

This function serves as a unified interface for writing data from a pyspark dataframe. Depending on the method parameter, it will either write to a file path or a table.

  • If method is "path", the function will use the write_to_path function to write the data to the specified path and name.
  • If method is "table", the function will use the write_to_table function to write the data to the specified schema and name.

Parameters:

Name Type Description Default
data_frame DataFrame

The DataFrame to be written. Must be a valid pyspark DataFrame (pyspark.sql.DataFrame).

required
name str

The name of the table or file where it will be written.

required
method Literal['table', 'path']

The method to use for writing the data. Either "table" or "path".

required
path Optional[str]

The path location for where to save the table. Required if method is "path".
Defaults to None.

None
schema Optional[str]

The schema of the table where it will be written. Required if method is "table".
Defaults to None.

None
data_format Optional[SPARK_FORMATS]

The format that the data_frame will be written to.
Defaults to "parquet".

'parquet'
mode Optional[WRITE_MODES]

The behaviour for when the data already exists.
For more info, check the pyspark docs: pyspark.sql.DataFrameWriter.mode.
Defaults to None.

None
write_options Dict[str, str]

Any additional settings to parse to the writer class.
Like, for example:

  • If you are writing to a Delta object, and wanted to overwrite the schema: {"overwriteSchema": "true"}.
  • If you're writing to a CSV file, and wanted to specify the header row: {"header": "true"}.

For more info, check the pyspark docs: pyspark.sql.DataFrameWriter.options.
Defaults to dict().

None
partition_cols Optional[Union[str_collection, str]]

The column(s) that the table should partition by.
Defaults to None.

None

Raises:

Type Description
TypeError

If any of the inputs parsed to the parameters of this function are not the correct type. Uses the @typeguard.typechecked decorator.

ValidationError

If name contains /, or is structured with three elements like: source.schema.table.

Returns:

Type Description
type(None)

Nothing is returned.

Note

You know that this function is successful if the table or file exists at the specified location, and there are no errors thrown.

Examples
Set up
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
>>> # Imports
>>> import pandas as pd
>>> from pyspark.sql import SparkSession
>>> from toolbox_pyspark.io import write
>>> from toolbox_pyspark.checks import table_exists
>>>
>>> # Instantiate Spark
>>> spark = SparkSession.builder.getOrCreate()
>>>
>>> # Create data
>>> df = spark.createDataFrame(
...     pd.DataFrame(
...         {
...             "a": [1, 2, 3, 4],
...             "b": ["a", "b", "c", "d"],
...             "c": [1, 1, 1, 1],
...             "d": ["2", "2", "2", "2"],
...         }
...     )
... )

Check
1
>>> df.show()
Terminal
+---+---+---+---+
| a | b | c | d |
+---+---+---+---+
| 1 | a | 1 | 2 |
| 2 | b | 1 | 2 |
| 3 | c | 1 | 2 |
| 4 | d | 1 | 2 |
+---+---+---+---+

Example 1: Write to Path
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
>>> write(
...     data_frame=df,
...     name="df.csv",
...     method="path",
...     path="./test",
...     data_format="csv",
...     mode="overwrite",
...     write_options={"header": "true"},
... )
>>>
>>> table_exists(
...     name="df.csv",
...     path="./test",
...     data_format="csv",
...     spark_session=df.sparkSession,
... )
Terminal
True

Conclusion: Successfully written to path.

Example 2: Write to Table
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
>>> write(
...     data_frame=df,
...     name="test_table",
...     method="table",
...     schema="default",
...     data_format="parquet",
...     mode="overwrite",
... )
>>>
>>> table_exists(
...     name="test_table",
...     schema="default",
...     data_format="parquet",
...     spark_session=df.sparkSession,
... )
Terminal
True

Conclusion: Successfully written to table.

Example 3: Invalid Path
1
2
3
4
5
6
7
8
9
>>> write(
...     data_frame=df,
...     name="df.csv",
...     method="path",
...     path="./invalid_path",
...     data_format="csv",
...     mode="overwrite",
...     write_options={"header": "true"},
... )
Terminal
Py4JJavaError: An error occurred while calling o45.save.

Conclusion: Failed to write to invalid path.

Example 4: Invalid Table Structure
1
2
3
4
5
6
7
8
>>> write(
...     data_frame=df,
...     name="schema.test_table",
...     method="table",
...     schema="source",
...     data_format="parquet",
...     mode="overwrite",
... )
Terminal
Invalid table. Should be in the format `schema.table`: `source.schema.test_table`.

Conclusion: Failed to write to table due to invalid table structure.

See Also
Source code in src/toolbox_pyspark/io.py
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
@typechecked
def write(
    data_frame: psDataFrame,
    name: str,
    method: Literal["table", "path"],
    path: Optional[str] = None,
    schema: Optional[str] = None,
    data_format: Optional[SPARK_FORMATS] = "parquet",
    mode: Optional[WRITE_MODES] = None,
    write_options: Optional[str_dict] = None,
    partition_cols: Optional[str_collection] = None,
) -> None:
    """
    !!! note "Summary"
        Write a dataframe to a specified `path` or `schema` and `name` with format `data_format`.

    ???+ abstract "Details"
        This function serves as a unified interface for writing data from a `pyspark` dataframe. Depending on the `method` parameter, it will either write to a file path or a table.

        - If `method` is `#!py "path"`, the function will use the `write_to_path` function to write the data to the specified `path` and `name`.
        - If `method` is `#!py "table"`, the function will use the `write_to_table` function to write the data to the specified `schema` and `name`.

    Params:
        data_frame (psDataFrame):
            The DataFrame to be written. Must be a valid `pyspark` DataFrame ([`pyspark.sql.DataFrame`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrame.html)).
        name (str):
            The name of the table or file where it will be written.
        method (Literal["table", "path"]):
            The method to use for writing the data. Either `#!py "table"` or `#!py "path"`.
        path (Optional[str], optional):
            The path location for where to save the table. Required if `method` is `#!py "path"`.<br>
            Defaults to `#!py None`.
        schema (Optional[str], optional):
            The schema of the table where it will be written. Required if `method` is `#!py "table"`.<br>
            Defaults to `#!py None`.
        data_format (Optional[SPARK_FORMATS], optional):
            The format that the `data_frame` will be written to.<br>
            Defaults to `#!py "parquet"`.
        mode (Optional[WRITE_MODES], optional):
            The behaviour for when the data already exists.<br>
            For more info, check the `pyspark` docs: [`pyspark.sql.DataFrameWriter.mode`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameWriter.mode.html).<br>
            Defaults to `#!py None`.
        write_options (Dict[str, str], optional):
            Any additional settings to parse to the writer class.<br>
            Like, for example:

            - If you are writing to a Delta object, and wanted to overwrite the schema: `#!py {"overwriteSchema": "true"}`.
            - If you're writing to a CSV file, and wanted to specify the header row: `#!py {"header": "true"}`.

            For more info, check the `pyspark` docs: [`pyspark.sql.DataFrameWriter.options`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameWriter.options.html).<br>
            Defaults to `#!py dict()`.
        partition_cols (Optional[Union[str_collection, str]], optional):
            The column(s) that the table should partition by.<br>
            Defaults to `#!py None`.

    Raises:
        TypeError:
            If any of the inputs parsed to the parameters of this function are not the correct type. Uses the [`@typeguard.typechecked`](https://typeguard.readthedocs.io/en/stable/api.html#typeguard.typechecked) decorator.
        ValidationError:
            If `name` contains `/`, or is structured with three elements like: `source.schema.table`.

    Returns:
        (type(None)):
            Nothing is returned.

    ???+ tip "Note"
        You know that this function is successful if the table or file exists at the specified location, and there are no errors thrown.

    ???+ example "Examples"

        ```{.py .python linenums="1" title="Set up"}
        >>> # Imports
        >>> import pandas as pd
        >>> from pyspark.sql import SparkSession
        >>> from toolbox_pyspark.io import write
        >>> from toolbox_pyspark.checks import table_exists
        >>>
        >>> # Instantiate Spark
        >>> spark = SparkSession.builder.getOrCreate()
        >>>
        >>> # Create data
        >>> df = spark.createDataFrame(
        ...     pd.DataFrame(
        ...         {
        ...             "a": [1, 2, 3, 4],
        ...             "b": ["a", "b", "c", "d"],
        ...             "c": [1, 1, 1, 1],
        ...             "d": ["2", "2", "2", "2"],
        ...         }
        ...     )
        ... )
        ```

        ```{.py .python linenums="1" title="Check"}
        >>> df.show()
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        +---+---+---+---+
        | a | b | c | d |
        +---+---+---+---+
        | 1 | a | 1 | 2 |
        | 2 | b | 1 | 2 |
        | 3 | c | 1 | 2 |
        | 4 | d | 1 | 2 |
        +---+---+---+---+
        ```
        </div>

        ```{.py .python linenums="1" title="Example 1: Write to Path"}
        >>> write(
        ...     data_frame=df,
        ...     name="df.csv",
        ...     method="path",
        ...     path="./test",
        ...     data_format="csv",
        ...     mode="overwrite",
        ...     write_options={"header": "true"},
        ... )
        >>>
        >>> table_exists(
        ...     name="df.csv",
        ...     path="./test",
        ...     data_format="csv",
        ...     spark_session=df.sparkSession,
        ... )
        ```
        <div class="result" markdown>
        ```{.sh .shell title="Terminal"}
        True
        ```
        !!! success "Conclusion: Successfully written to path."
        </div>

        ```{.py .python linenums="1" title="Example 2: Write to Table"}
        >>> write(
        ...     data_frame=df,
        ...     name="test_table",
        ...     method="table",
        ...     schema="default",
        ...     data_format="parquet",
        ...     mode="overwrite",
        ... )
        >>>
        >>> table_exists(
        ...     name="test_table",
        ...     schema="default",
        ...     data_format="parquet",
        ...     spark_session=df.sparkSession,
        ... )
        ```
        <div class="result" markdown>
        ```{.sh .shell title="Terminal"}
        True
        ```
        !!! success "Conclusion: Successfully written to table."
        </div>

        ```{.py .python linenums="1" title="Example 3: Invalid Path"}
        >>> write(
        ...     data_frame=df,
        ...     name="df.csv",
        ...     method="path",
        ...     path="./invalid_path",
        ...     data_format="csv",
        ...     mode="overwrite",
        ...     write_options={"header": "true"},
        ... )
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        Py4JJavaError: An error occurred while calling o45.save.
        ```
        !!! failure "Conclusion: Failed to write to invalid path."
        </div>

        ```{.py .python linenums="1" title="Example 4: Invalid Table Structure"}
        >>> write(
        ...     data_frame=df,
        ...     name="schema.test_table",
        ...     method="table",
        ...     schema="source",
        ...     data_format="parquet",
        ...     mode="overwrite",
        ... )
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        Invalid table. Should be in the format `schema.table`: `source.schema.test_table`.
        ```
        !!! failure "Conclusion: Failed to write to table due to invalid table structure."
        </div>

    ??? tip "See Also"
        - [`write_to_path`][toolbox_pyspark.io.write_to_path]
        - [`write_to_table`][toolbox_pyspark.io.write_to_table]
        - [`save`][toolbox_pyspark.io.save]
    """

    if method == "table":
        write_to_table(
            data_frame=data_frame,
            name=name,
            schema=schema,
            data_format=data_format,
            mode=mode,
            write_options=write_options,
            partition_cols=partition_cols,
        )
    if method == "path":
        write_to_path(
            data_frame=data_frame,
            name=name,
            path=path,
            data_format=data_format,
            mode=mode,
            write_options=write_options,
            partition_cols=partition_cols,
        )

transfer πŸ”—

transfer(
    spark_session: SparkSession,
    from_table_name: str,
    to_table_name: str,
    method: Literal["table", "path"],
    from_table_path: Optional[str] = None,
    from_table_schema: Optional[str] = None,
    from_table_format: Optional[SPARK_FORMATS] = "parquet",
    from_table_options: Optional[str_dict] = None,
    to_table_path: Optional[str] = None,
    to_table_schema: Optional[str] = None,
    to_table_format: Optional[SPARK_FORMATS] = "parquet",
    to_table_mode: Optional[WRITE_MODES] = None,
    to_table_options: Optional[str_dict] = None,
    to_partition_cols: Optional[str_collection] = None,
) -> None

Summary

Transfer a table or file from one location to another.

Details

This function serves as a unified interface for transferring data from one location to another. Depending on the method parameter, it will either transfer from a file path or a table.

  • If method is "path", the function will use the transfer_by_path function to transfer the data from the specified from_table_path and from_table_name to the specified to_table_path and to_table_name.
  • If method is "table", the function will use the transfer_by_table function to transfer the data from the specified from_table_schema and from_table_name to the specified to_table_schema and to_table_name.

Parameters:

Name Type Description Default
spark_session SparkSession

The Spark session to use for the transfer.

required
from_table_name str

The name of the table or file to be transferred.

required
to_table_name str

The name of the table or file where it will be transferred.

required
method Literal['table', 'path']

The method to use for transferring the data. Either "table" or "path".

required
from_table_path Optional[str]

The path from which the file will be transferred. Required if method is "path".
Defaults to None.

None
from_table_schema Optional[str]

The schema of the table to be transferred. Required if method is "table".
Defaults to None.

None
from_table_format Optional[SPARK_FORMATS]

The format of the data at the source location.
Defaults to "parquet".

'parquet'
from_table_options Dict[str, str]

Any additional options to parse to the Spark reader.
For more info, check the pyspark docs: pyspark.sql.DataFrameReader.options.
Defaults to dict().

None
to_table_path Optional[str]

The path location for where to save the table. Required if method is "path".
Defaults to None.

None
to_table_schema Optional[str]

The schema of the table where it will be saved. Required if method is "table".
Defaults to None.

None
to_table_format Optional[SPARK_FORMATS]

The format of the saved table.
Defaults to "parquet".

'parquet'
to_table_mode Optional[WRITE_MODES]

The behaviour for when the data already exists.
For more info, check the pyspark docs: pyspark.sql.DataFrameWriter.mode.
Defaults to None.

None
to_table_options Dict[str, str]

Any additional settings to parse to the writer class.
For more info, check the pyspark docs: pyspark.sql.DataFrameWriter.options.
Defaults to dict().

None
to_partition_cols Optional[Union[str_collection, str]]

The column(s) that the table should partition by.
Defaults to None.

None

Raises:

Type Description
TypeError

If any of the inputs parsed to the parameters of this function are not the correct type. Uses the @typeguard.typechecked decorator.

ValidationError

If from_table_name or to_table_name contains /, or is structured with three elements like: source.schema.table.

Returns:

Type Description
type(None)

Nothing is returned.

Note

You know that this function is successful if the table or file exists at the specified location, and there are no errors thrown.

Examples
Set up
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
>>> # Imports
>>> import pandas as pd
>>> from pyspark.sql import SparkSession
>>> from toolbox_pyspark.io import transfer
>>> from toolbox_pyspark.checks import table_exists
>>>
>>> # Instantiate Spark
>>> spark = SparkSession.builder.getOrCreate()
>>>
>>> # Create data
>>> df = pd.DataFrame(
...     {
...         "a": [1, 2, 3, 4],
...         "b": ["a", "b", "c", "d"],
...         "c": [1, 1, 1, 1],
...         "d": ["2", "2", "2", "2"],
...     }
... )
>>> df.to_csv("./test/table.csv")
>>> df.to_parquet("./test/table.parquet")
>>> spark.read.parquet("./test/table.parquet").createOrReplaceTempView("test_table")

Example 1: Transfer from Path
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
>>> transfer(
...     spark_session=spark,
...     method="path",
...     from_table_name="table.csv",
...     from_table_path="./test",
...     from_table_format="csv",
...     from_table_options={"header": "true"},
...     to_table_name="new_table.csv",
...     to_table_path="./other",
...     to_table_format="csv",
...     to_table_mode="overwrite",
...     to_table_options={"header": "true"},
... )
>>>
>>> table_exists(
...     name="new_table.csv",
...     path="./other",
...     data_format="csv",
...     spark_session=spark,
... )
Terminal
True

Conclusion: Successfully transferred from path.

Example 2: Transfer from Table
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
>>> transfer(
...     spark_session=spark,
...     method="table",
...     from_table_name="test_table",
...     from_table_schema="default",
...     from_table_format="parquet",
...     to_table_name="new_table",
...     to_table_schema="default",
...     to_table_format="parquet",
...     to_table_mode="overwrite",
... )
>>>
>>> table_exists(
...     name="new_table",
...     schema="default",
...     data_format="parquet",
...     spark_session=spark,
... )
Terminal
True

Conclusion: Successfully transferred from table.

Example 3: Invalid Path
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
>>> transfer(
...     spark_session=spark,
...     method="path",
...     from_table_name="table.csv",
...     from_table_path="./invalid_path",
...     from_table_format="csv",
...     from_table_options={"header": "true"},
...     to_table_name="new_table.csv",
...     to_table_path="./other",
...     to_table_format="csv",
...     to_table_mode="overwrite",
...     to_table_options={"header": "true"},
... )
Terminal
Py4JJavaError: An error occurred while calling o45.load.

Conclusion: Failed to transfer from invalid path.

Example 4: Invalid Table Structure
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
>>> transfer(
...     spark_session=spark,
...     method="table",
...     from_table_name="schema.test_table",
...     from_table_schema="source",
...     from_table_format="parquet",
...     to_table_name="new_table",
...     to_table_schema="default",
...     to_table_format="parquet",
...     to_table_mode="overwrite",
... )
Terminal
Invalid table. Should be in the format `schema.table`: `source.schema.test_table`.

Conclusion: Failed to transfer from invalid table structure.

See Also
Source code in src/toolbox_pyspark/io.py
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
@typechecked
def transfer(
    spark_session: SparkSession,
    from_table_name: str,
    to_table_name: str,
    method: Literal["table", "path"],
    from_table_path: Optional[str] = None,
    from_table_schema: Optional[str] = None,
    from_table_format: Optional[SPARK_FORMATS] = "parquet",
    from_table_options: Optional[str_dict] = None,
    to_table_path: Optional[str] = None,
    to_table_schema: Optional[str] = None,
    to_table_format: Optional[SPARK_FORMATS] = "parquet",
    to_table_mode: Optional[WRITE_MODES] = None,
    to_table_options: Optional[str_dict] = None,
    to_partition_cols: Optional[str_collection] = None,
) -> None:
    """
    !!! note "Summary"
        Transfer a table or file from one location to another.

    ???+ abstract "Details"
        This function serves as a unified interface for transferring data from one location to another. Depending on the `method` parameter, it will either transfer from a file path or a table.

        - If `method` is `#!py "path"`, the function will use the `transfer_by_path` function to transfer the data from the specified `from_table_path` and `from_table_name` to the specified `to_table_path` and `to_table_name`.
        - If `method` is `#!py "table"`, the function will use the `transfer_by_table` function to transfer the data from the specified `from_table_schema` and `from_table_name` to the specified `to_table_schema` and `to_table_name`.

    Params:
        spark_session (SparkSession):
            The Spark session to use for the transfer.
        from_table_name (str):
            The name of the table or file to be transferred.
        to_table_name (str):
            The name of the table or file where it will be transferred.
        method (Literal["table", "path"]):
            The method to use for transferring the data. Either `#!py "table"` or `#!py "path"`.
        from_table_path (Optional[str], optional):
            The path from which the file will be transferred. Required if `method` is `#!py "path"`.<br>
            Defaults to `#!py None`.
        from_table_schema (Optional[str], optional):
            The schema of the table to be transferred. Required if `method` is `#!py "table"`.<br>
            Defaults to `#!py None`.
        from_table_format (Optional[SPARK_FORMATS], optional):
            The format of the data at the source location.<br>
            Defaults to `#!py "parquet"`.
        from_table_options (Dict[str, str], optional):
            Any additional options to parse to the Spark reader.<br>
            For more info, check the `pyspark` docs: [`pyspark.sql.DataFrameReader.options`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameReader.options.html).<br>
            Defaults to `#!py dict()`.
        to_table_path (Optional[str], optional):
            The path location for where to save the table. Required if `method` is `#!py "path"`.<br>
            Defaults to `#!py None`.
        to_table_schema (Optional[str], optional):
            The schema of the table where it will be saved. Required if `method` is `#!py "table"`.<br>
            Defaults to `#!py None`.
        to_table_format (Optional[SPARK_FORMATS], optional):
            The format of the saved table.<br>
            Defaults to `#!py "parquet"`.
        to_table_mode (Optional[WRITE_MODES], optional):
            The behaviour for when the data already exists.<br>
            For more info, check the `pyspark` docs: [`pyspark.sql.DataFrameWriter.mode`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameWriter.mode.html).<br>
            Defaults to `#!py None`.
        to_table_options (Dict[str, str], optional):
            Any additional settings to parse to the writer class.<br>
            For more info, check the `pyspark` docs: [`pyspark.sql.DataFrameWriter.options`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameWriter.options.html).<br>
            Defaults to `#!py dict()`.
        to_partition_cols (Optional[Union[str_collection, str]], optional):
            The column(s) that the table should partition by.<br>
            Defaults to `#!py None`.

    Raises:
        TypeError:
            If any of the inputs parsed to the parameters of this function are not the correct type. Uses the [`@typeguard.typechecked`](https://typeguard.readthedocs.io/en/stable/api.html#typeguard.typechecked) decorator.
        ValidationError:
            If `from_table_name` or `to_table_name` contains `/`, or is structured with three elements like: `source.schema.table`.

    Returns:
        (type(None)):
            Nothing is returned.

    ???+ tip "Note"
        You know that this function is successful if the table or file exists at the specified location, and there are no errors thrown.

    ???+ example "Examples"

        ```{.py .python linenums="1" title="Set up"}
        >>> # Imports
        >>> import pandas as pd
        >>> from pyspark.sql import SparkSession
        >>> from toolbox_pyspark.io import transfer
        >>> from toolbox_pyspark.checks import table_exists
        >>>
        >>> # Instantiate Spark
        >>> spark = SparkSession.builder.getOrCreate()
        >>>
        >>> # Create data
        >>> df = pd.DataFrame(
        ...     {
        ...         "a": [1, 2, 3, 4],
        ...         "b": ["a", "b", "c", "d"],
        ...         "c": [1, 1, 1, 1],
        ...         "d": ["2", "2", "2", "2"],
        ...     }
        ... )
        >>> df.to_csv("./test/table.csv")
        >>> df.to_parquet("./test/table.parquet")
        >>> spark.read.parquet("./test/table.parquet").createOrReplaceTempView("test_table")
        ```

        ```{.py .python linenums="1" title="Example 1: Transfer from Path"}
        >>> transfer(
        ...     spark_session=spark,
        ...     method="path",
        ...     from_table_name="table.csv",
        ...     from_table_path="./test",
        ...     from_table_format="csv",
        ...     from_table_options={"header": "true"},
        ...     to_table_name="new_table.csv",
        ...     to_table_path="./other",
        ...     to_table_format="csv",
        ...     to_table_mode="overwrite",
        ...     to_table_options={"header": "true"},
        ... )
        >>>
        >>> table_exists(
        ...     name="new_table.csv",
        ...     path="./other",
        ...     data_format="csv",
        ...     spark_session=spark,
        ... )
        ```
        <div class="result" markdown>
        ```{.sh .shell title="Terminal"}
        True
        ```
        !!! success "Conclusion: Successfully transferred from path."
        </div>

        ```{.py .python linenums="1" title="Example 2: Transfer from Table"}
        >>> transfer(
        ...     spark_session=spark,
        ...     method="table",
        ...     from_table_name="test_table",
        ...     from_table_schema="default",
        ...     from_table_format="parquet",
        ...     to_table_name="new_table",
        ...     to_table_schema="default",
        ...     to_table_format="parquet",
        ...     to_table_mode="overwrite",
        ... )
        >>>
        >>> table_exists(
        ...     name="new_table",
        ...     schema="default",
        ...     data_format="parquet",
        ...     spark_session=spark,
        ... )
        ```
        <div class="result" markdown>
        ```{.sh .shell title="Terminal"}
        True
        ```
        !!! success "Conclusion: Successfully transferred from table."
        </div>

        ```{.py .python linenums="1" title="Example 3: Invalid Path"}
        >>> transfer(
        ...     spark_session=spark,
        ...     method="path",
        ...     from_table_name="table.csv",
        ...     from_table_path="./invalid_path",
        ...     from_table_format="csv",
        ...     from_table_options={"header": "true"},
        ...     to_table_name="new_table.csv",
        ...     to_table_path="./other",
        ...     to_table_format="csv",
        ...     to_table_mode="overwrite",
        ...     to_table_options={"header": "true"},
        ... )
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        Py4JJavaError: An error occurred while calling o45.load.
        ```
        !!! failure "Conclusion: Failed to transfer from invalid path."
        </div>

        ```{.py .python linenums="1" title="Example 4: Invalid Table Structure"}
        >>> transfer(
        ...     spark_session=spark,
        ...     method="table",
        ...     from_table_name="schema.test_table",
        ...     from_table_schema="source",
        ...     from_table_format="parquet",
        ...     to_table_name="new_table",
        ...     to_table_schema="default",
        ...     to_table_format="parquet",
        ...     to_table_mode="overwrite",
        ... )
        ```
        <div class="result" markdown>
        ```{.txt .text title="Terminal"}
        Invalid table. Should be in the format `schema.table`: `source.schema.test_table`.
        ```
        !!! failure "Conclusion: Failed to transfer from invalid table structure."
        </div>

    ??? tip "See Also"
        - [`transfer_by_path`][toolbox_pyspark.io.transfer_by_path]
        - [`transfer_by_table`][toolbox_pyspark.io.transfer_by_table]
    """

    if method == "table":
        transfer_by_table(
            spark_session=spark_session,
            from_table_name=from_table_name,
            to_table_name=to_table_name,
            from_table_schema=from_table_schema,
            from_table_format=from_table_format,
            from_table_options=from_table_options,
            to_table_schema=to_table_schema,
            to_table_format=to_table_format,
            to_table_mode=to_table_mode,
            to_table_options=to_table_options,
            to_table_partition_cols=to_partition_cols,
        )
    if method == "path":
        transfer_by_path(
            spark_session=spark_session,
            from_table_path=from_table_path,
            from_table_name=from_table_name,
            from_table_format=from_table_format,
            to_table_path=to_table_path,
            to_table_name=to_table_name,
            to_table_format=to_table_format,
            from_table_options=from_table_options,
            to_table_mode=to_table_mode,
            to_table_options=to_table_options,
            to_table_partition_cols=to_partition_cols,
        )

load_from_path module-attribute πŸ”—

load_from_path = read_from_path

save_to_path module-attribute πŸ”—

save_to_path = write_to_path

load_from_table module-attribute πŸ”—

load_from_table = read_from_table

save_to_table module-attribute πŸ”—

save_to_table = write_to_table

load module-attribute πŸ”—

load = read

save module-attribute πŸ”—

save = write